Water Vapor Tomographic Modeling and Performance Evaluation Using Multi-sensor Data in Hong Kong

*The Hong Kong Polytechnic University
Water Vapor Tomographic Modeling and Performance Evaluation Using Multi-Sensor Data in Hong Kong

Zhizhao Liu¹, Biyan Chen¹, Wang Chun Woo², Pak-wai Chan², Wai Kin Wong²

¹Department of Land Surveying and Geo-Informatics
The Hong Kong Polytechnic University
Hong Kong, P. R. China
E-mail: lszzliu@polyu.edu.hk

²Hong Kong Observatory
Hong Kong, P. R. China

Earth and Environment Sciences for Future Generations
June 22-July 2, 2015, Prague, Czech Republic
1. Research background
2. Description of multiple water vapor observations
3. Principle of water vapor tomography
4. Tomography model evaluation
5. Conclusion
Significance of water vapor

- Key atmospheric greenhouse gas

- Atmospheric processes:
 - cloud formation
 - hydrological cycle
 - radiative balance
 - evolution of atmospheric storm systems

- To monitor the variation of 3D water vapor
Research background

- Highly populated and extremely humid coastal city
- Average humidity: 78%
- Annual rainfall: 2,400 mm
- Typhoon: 3~4 per year
- Extreme weather: thousands of casualties from 1883
- June 18, 1972, 156 people died in landslips caused by heavy rain
Water vapor observation techniques

Atmospheric Water Vapor Observation

- Microwave Water Vapor Radiometer (WVR)
- Aerosol Robotic NETwork (AERONET) sunphotometer
- Global Navigation Satellite System (GNSS)
- MODerate resolution Imaging Spectroradiometer (MODIS)
- Radiosonde
1. Research background
2. Description of multiple water vapor observations
3. Principle of water vapor tomography
4. Tomography model evaluation
5. Conclusion
Water vapor observation techniques in HK

Geographical distribution of the GPS, radiosonde, WVR and AERONET stations in Hong Kong

Area of Hong Kong: 1,100 km2
Population: ~8.0 million
GPS Network in Hong Kong

Satellite Positioning Reference Station Network (SatRef):

- 12 GPS stations
- LEICA GRX1200+GNSS (receiver)
- LEIAR25.R4 LEIT (antenna)

Water vapor measurements

- GPS data processed by Bernese 5.0 software
- Zenith tropospheric delay (ZTD), gradients and the residuals
- Parameters are estimated once an hour
GPS-estimated water vapor

The slant wet delay (SWD) can be derived from:

\[
SWD = (ZTD - ZHD) \cdot f(z) + \frac{\partial f}{\partial z} \cdot (G_{N,W} \cdot \cos(\phi) + G_{E,W} \cdot \sin(\phi)) + R
\]

Synoptic observations:

- Pressure, temperature, relative humidity
- Wet refractivity \(N_W \)

\[
N_W = 71.2952 \frac{e}{T} + 375463 \frac{e}{T^2}
\]
Water Vapor Radiometer (WVR)

Data interval: 15 minutes

- 7 oxygen channels
- 7 water vapor channels

Temperature, humidity and liquid water vapor profiles up to a height of 10 km in zenith mode
- Provide accurate precipitable water vapor measurements
- Work in the periods with direct sunlight. No data at nighttime or in precipitation.

AERONET (AErosol Robotic NETwork)
Radiosonde

Launched daily at UTC 0:00 and 12:00

Pressure, temperature, relative humidity etc.

Hong Kong’s only Radiosonde station (Vaisala RS92) situated at the King’s Park

Wet refractivity profile
Numerical Weather Prediction (NWP) model

- Based on Japan Meteorological Agency (JMA) non-hydrostatic model
- Operating since the rain season of 2010
- Horizontal resolution of 2 km and the predictions are updated hourly

26th IUGG GENERAL ASSEMBLY 2015
PolyU Micro-LARGE

NWP model

- Temperature
- Dew point depression
- Geopotential height

16 isobaric levels
1000 hPa
100 hPa
608 km
608 km
1. Research background

2. Description of multiple water vapor observations

3. Principle of water vapor tomography

4. Tomography model evaluation

5. Conclusion
Principle of water vapor tomography

Tomography technique enables us to precisely probe the atmosphere:

- 3D water vapor distribution
- Under all weather conditions
- With high temporal and spatial resolution
Principle of water vapor tomography

GPS Satellites

Atmospheric Water Vapor Voxels

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Length of ray in voxel 2

Water vapor refractivity in voxel 2

\[SWD = a_1 \cdot x_1 + a_2 \cdot x_2 + a_3 \cdot x_3 + a_7 \cdot x_7 + a_8 \cdot x_8 \]

\[y_G = A_G \cdot x \]
Addition of observations

Radiosonde gives vertical constraint: Average of 3-day radiosonde water vapor profiles prior to tomographic period

Horizontal constraint:

\[x_5 = \left(x_1 + x_2 + x_3 + x_4 + x_6 + x_7 + x_8 + x_9 \right) / 8 \]
Solution to tomography equation

- Using Least-Squares method, the 3D water vapor field can be solved as:

\[
x = \left(A_G^T \cdot P_G \cdot A_G + A_W^T \cdot P_W \cdot A_W + A_A^T \cdot P_A \cdot A_A + A_s^T \cdot P_s \cdot A_s + \right.

\[
A_R^T \cdot P_R \cdot A_R + A_N^T \cdot P_N \cdot A_N + H^T \cdot P_G \cdot A_G \right)^{-1} \cdot \left(A_G^T \cdot P_G \cdot y_G + \right.

\[
A_W^T \cdot P_W \cdot y_W + A_A^T \cdot P_A \cdot y_A + A_s^T \cdot P_s \cdot y_s + A_R^T \cdot P_R \cdot y_R + A_N^T \cdot P_N \cdot y_N \right)
\]

where \(P \) matrices with different subscripts represent the weighting matrix for different observations and constraints.

Only approximate solution can be obtained
Solution to tomography equation

- Multiplicative algebraic reconstruction technique (MART) is implemented to improve the final results

\[X^k_{ij}|_{i-ray} = X^{k-1}_{ij}|_{i-ray} \cdot \left(\frac{y_i}{\langle A_i, x^{k-1} \rangle} \right) \sum_{j=1}^{n} A_{ij} \]

A more accurate water vapor density field can be obtained

relaxation parameter
Tomographic wet refractivity field

Evolution of wet refractivity field on 12 May 2013 (modeling interval: 30 minutes)
1. Research background

2. Description of multiple water vapor observations

3. Principle of water vapor tomography

4. Tomography model evaluation

5. Conclusion
Tomography model evaluation

Model evaluation period:
May 1 ~ Sept 30, 2013 (5 months)
Evaluation at GPS Station HKLT

ZWD derived from GPS and tomography during May 1 to September 30, 2013

<table>
<thead>
<tr>
<th>SWD (mm)</th>
<th>ZWD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>RMS</td>
</tr>
<tr>
<td>-0.57</td>
<td>10.85</td>
</tr>
</tbody>
</table>

In the graph, the data points represent the ZWD derived from GPS and tomography over the specified period. The graph shows a comparison between GPS and tomography across different days of the year in 2013.
Evaluation by Radiosonde profiles

Comparison between radiosonde and tomography

Bias: 0.85 mm/km
RMS: 7.13 mm/km
Correlation Coefficient: 0.9806

RMS errors at different altitude layers

3.30 mm/km
11.44 mm/km
Wet refractivity evaluation by WVR

Comparison between WVR at HK airport & tomography
Wet refractivity evaluation by ECMWF

26th IUGG GENERAL ASSEMBLY 2015

PolyU Micro-LARGE

Longitude (°E)
Latitude (°N)

RMS error (mm/km)
Height (km)

Overall Bias: 1.67 mm/km
Overall RMS: 7.21 mm/km
1. Research background

2. Description of multiple water vapor observations

3. Principle of water vapor tomography

4. Tomography model evaluation

5. Conclusion
Conclusion

- A water vapor tomography method using multi-sensor data is developed

- Evaluation using GPS-inferred SWD/ZWD:
 - SWD: 10.85 mm, ZWD: 6.46 mm, PWV: 1.05 mm

- Wet refractivity profiles evaluation:
 - Radiosonde: Overall: 7.13 mm/km, single layer: 3.30~11.44 mm/km
 - WVR: Overall: 7.29 mm/km, single layer: 3.69~13.78 mm/km
 - ECMWF: Overall: 7.21 mm/km, single layer: 3.26~11.41 mm/km
Water Vapor Tomographic Modeling and Performance Evaluation Using Multi-Sensor Data in Hong Kong

Zhizhao Liu 1, Biyan Chen 1, Wang Chun Woo 2, Pak-wai Chan 2, Wai Kin Wong 2

1 Department of Land Surveying and Geoinformatics, The Hong Kong Polytechnic University, Hong Kong, P. R. China

E-mail: lszzliu@polyu.edu.hk

2 Hong Kong Observatory, Hong Kong, P. R. China

Thank you very much!
Thanks for your attention

謝 謝