Deep Learning Nowcast

WOO Wang-chun Hong Kong Observatory Research Forum 18 Oct 2018

Artificial Intelligence

Machine Learning

Deep Learning

Deep Learning Nowcast

A Brief History

Year	Event
2014	Initiated collaboration with HKUST
2015	ConvLSTM developed, outperforming ROVER for rain/no-rain (0.5 mm/h), resolution limited to 100x100 only
2016	Model enhancement and adaptation
2017	TrajGRU developed and benchmarked, outperforming ROVER for 30mm/h support arbitrary resolution

Paper on NIPS2017

Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung Department of Computer Science and Engineering Hong Kong University of Science and Technology (xshiab,zgaoag,lolausen,hwangaz,dyyoung)@cso.ust.hk

> Wai-kin Wong, Wang-chun Woo Hong Kong Observatory Hong Kong, China {wkwong,wcwoo}@hko.gov.hk

Abstract

With the goal of making high-resolution forecasts of regional rainfall, precipitation nowcasting has become an important and fundamental technology underlying various public services ranging from rainstorm warnings to flight safety. Recently, the Convolutional LSTM (ConvLSTM) model has been shown to outperform traditional optical flow based methods for precipitation nowcasting, suggesting that deep learning models have a huge potential for solving the problem. However, the convolutional recurrence structure in ConvLSTM-based models is location-invariant while natural motion and transformation (e.g., rotation) are location-variant in general. Furthermore, since deep-learning-based precipitation nowcasting is a newly emerging area, clear evaluation protocols have not yet been established. To address these problems, we propose both a new model and a benchmark for precipitation nowcasting. Specifically, we go beyond ConvLSTM and propose the Trajectory GRU (TrajGRU) model that can actively learn the location-variant structure for recurrent connections. Besides, we provide a benchmark that includes a real-world large-scale dataset from the Hong Kong Observatory, a new training loss, and a comprehensive evaluation protocol to facilitate future research and gauge the state of the art.

https://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf

Deep Learning Nowcast developed

Based on Trajectory Gated Recurrent Unit (TrajGRU):

$$\begin{split} \mathcal{U}_t, \mathcal{V}_t &= \gamma(\mathcal{X}_t, \mathcal{H}_{t-1}), \\ \mathcal{Z}_t &= \sigma(\mathcal{W}_{xz} * \mathcal{X}_t + \sum_{l=1}^L \mathcal{W}_{hz}^l * \operatorname{warp}(\mathcal{H}_{t-1}, \mathcal{U}_{t,l}, \mathcal{V}_{t,l})), \\ \mathcal{R}_t &= \sigma(\mathcal{W}_{xr} * \mathcal{X}_t + \sum_{l=1}^L \mathcal{W}_{hr}^l * \operatorname{warp}(\mathcal{H}_{t-1}, \mathcal{U}_{t,l}, \mathcal{V}_{t,l})), \\ \mathcal{H}_t' &= f(\mathcal{W}_{xh} * \mathcal{X}_t + \mathcal{R}_t \circ (\sum_{l=1}^L \mathcal{W}_{hh}^l * \operatorname{warp}(\mathcal{H}_{t-1}, \mathcal{U}_{t,l}, \mathcal{V}_{t,l}))), \\ \mathcal{H}_t &= (1 - \mathcal{Z}_t) \circ \mathcal{H}_t' + \mathcal{Z}_t \circ \mathcal{H}_{t-1}. \end{split}$$

Innovations:

1) Trajectory

(**b**) For trajectory RNN, the recurrent connections are dynamically determined.

2) Weighted Error Function

(1	1,	x < 2
	2,	$2 \le x < 5$
$w(x)$ to each pixel according to its rainfall intensity x : $w(x) = \begin{cases} x \\ y \\ y \end{cases}$	5,	$5 \leq x < 10~$. Also, the
	10,	$10 \le x < 30$
(;	30,	$x \ge 30$

masked pixels have weight 0. The resulting B-MSE and B-MAE scores are computed as B-MSE = $\frac{1}{N} \sum_{n=1}^{N} \sum_{j=1}^{480} \sum_{j=1}^{480} \sum_{j=1}^{480} w_{n,i,j} (x_{n,i,j} - \hat{x}_{n,i,j})^2$ and B-MAE = $\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{480} \sum_{j=1}^{480} w_{n,i,j} |x_{n,i,j} - \hat{x}_{n,i,j}|$, where N is the total number of frames and $w_{n,i,j}$ is the weight corresponding to the (i, j)th pixel in the *n*th frame. For the conventional MSE and MAE measures, we simply set all the weights to 1 except the masked points.

Performance of TrajGRU

Algorithms	$r \ge 0.5$	$r \ge 2$	$\begin{array}{l} \text{HSS} \uparrow \\ r \geq 5 \end{array}$	$r \ge 10$	$r \ge 30$	B-MSE↓	B-MAE↓
	Offline Se	etting					
Last Frame	0.5207	0.4531	0.3582	0.2512	0.1193	15274	28042
ROVER + Linear	0.6038	0.5473	0.4516	0.3301	0.1762	11651	23437
ROVER + Non-linear	0.5896	0.5436	0.4590	0.3318	0.1576	10945	22857
2D CNN	0.6366	0.5809	0.4851	0.3690	0.1885	7332	18091
3D CNN	0.6334	0.5825	0.4862	0.3734	0.2034	7202	17593
ConvGRU-nobal	0.6756	0.6094	0.4981	0.3286	0.1160	9087	19642
ConvGRU	0.6701	0.6104	0.5163	0.4159	0.2893	5951	15000
TrajGRU	0.6731	0.6126	0.5192	0.4207	0.2996	5816	14675
	Online Se	etting					
2D CNN	0.6365	0.5756	0.4790	0.3744	0.2162	6654	17071
3D CNN	0.6355	0.5736	0.4766	0.3733	0.2220	6690	16903
ConvGRU	0.6712	0.6105	0.5183	0.4226	0.2981	5724	14772
TrajGRU	0.6760	0.6164	0.5253	0.4308	0.3111	5589	14465

60-min Forecast Reflectivity Based at 2018/08/26 23:00H

Optical Flow (ROVER)

Actual

60-min Forecast Reflectivity Based at 2018/08/29 18:00

Optical Flow (ROVER)

Actual

60-min Forecast Reflectivity Based at 2018/09/16 10:30

Optical Flow (ROVER)

Actual

120-min Forecast Reflectivity Based at 2018/08/22 16:30

Optical Flow (ROVER)

Actual

60-min Forecast Reflectivity Based at 2018/08/22 17:30

Optical Flow (ROVER)

Actual

Deep Learn (TrajGRU) 2018/08/22 Various Base Time; Valid at 18:30H

Discussion on "Decay"

Ĵ	sxjscience commented on 3 Apr	Owner	+	••••
	是H_t,forecaster的第一个RNN的data是全0			
	chencodeX commented on 10 Apr		+	
	您在训练的时候有没有发现,预测的结果中,越往后的时刻,整体图像的亮度在不断	变暗。		
S	🗟 sxjscience commented on 11 Apr	Owner	+ 💼	•••
	有观察到过这个现象			
	Get Outlook for iOS <https: aka.ms="" o0ukef=""> </https:>			
	chencodeX commented on 11 Apr		+ (1)	
	您是怎么解决这个问题的呢?			
	chencodeX commented on 12 Apr		+	
	左你的心文中,有——部分早父千-JR 在1986 南等级之间的转换的。			
	The subject $r \to r $	prmation to days for te ional mode casting mo are convert $\log R$ where monthly ra	form sting. l that del if ed to R is infall]
	请问您这个log是以十为底还是以自然对数为底呢?			

S	₿ sxjscience commented on 12 Apr	Owner	+ 🗊	
	10为底			
	Get Outlook for iOS <https: aka.ms="" c00ukef=""></https:>			
¥.	chencodeX commented on 12 Apr		+ 🖽	
	以10为唐的时候,dBZ为70的情况下,R为2260.这正常吗?			
	O 🖪 chencodeX closed this on 12 Apr			
	wcwoo commented on 28 Apr	Collaborator	+ 🗊	
	雷達dBZ正常不超過65,其實在60後可能已在落冰雹了。 關於採用的a,b值,是根據三年資源數據以TMIN和結性回歸計算出來的。			
	• o wcwoo reopened this on 28 Apr			
1	wcwoo commented on 1 May	Collaborator	+ 💼	••••
	有關整體圖像不斷變暗的現象,在我們業務測試中也有留意到。我猜想是因為神 制,所以當實條時限是夠長時牽聯計整都不預測。這也涉及評分準則。因為是定 大雨的權重,對長時間預報任何預測都幾乎成為空報,同時又未能減少還報,所 了。將來可以考慮改用三維(時空)FSS,或讓評分有點容證度,以改善這個情況	經網絡明白了外 時定點計算,而 以最優化的策略 2。	推法的 且加重 就是不	限 了 軽
-				
	chencodeX commented on 2 May		+ 💼	•••
	非常感谢您的解答			

DL/Traj-GRU on Github

cience/HKO-7: Source code o 🗙 🕇			
C 🛆 🔒 GitHub, Inc. [US] https://github.	:om/sxjscience/HKO-7		🕸 Q 🖈 🍊 🖭 🌄
Search or jump to	Pull requests Issues Marketplace	Explore	
📮 sxjscience / HKO-7		O Unwatch -	15 ★ Star 120
♦ Code (1) Issues 2	្រាំ Pull requests 0 🔲 Projects 0 💷 V	/iki 🔟 Insights	
Source code of paper "[NIP	S2017] Deep Learning for Precipitation Now	casting: A Benchmark and A New	Model"
17 commits	រ្រៃ 1 branch	𝔝 0 releases	L contributors
Branch: master - New pull re	quest	Create new file Upload	files Find file Clone or download - Latest commit b9235ca on 3 May
VarFlow	HKO-7		11 months ago
experiments	HKO-7		11 months ago
hko_data	HKO-7		11 months ago
🖿 mnist_data	fix		11 months ago
nowcasting	HKO-7		11 months ago
.gitignore	add .gitignore		11 months ago
HKO-7_Dataset_Undertaki	ng_fillable.pdf added undertaking form a	nd edited README.md	6 months ago

WAY FORWARD

Better Error Function (Deterministic)

- May consider functions with higher tolerance and thus less double penalty to achieve More Realism, e.g.
 - Spatial-Temporal
 Smoothing
 - Fractional Skill Score (FSS)

Probabilistic Rainfall Nowcast Based on Optical Flow (ROVER)

Probability at Selected Thresholds

Probabilistic Rainfall Nowcast Based on Optical Flow (ROVER)

Rainfall Intensity at Selected Percentile

Probabilistic Rainfall Nowcast Based on Deep Learn (TrajGRU)

- Possible Way:
 - Time-Lagged Ensemble (TLE)
 - Make an ensemble of 36 members based on 9 years of data, instead of 7, i.e. "₉C₇=36"

Error Function (Probabilistic)

Reliability Diagram

ROC Curve

Other Deep Learning Applications

- State of Sky and Visibility from Web Cam
- Rainfall Rate from Satellite Data
- Probabilities of Rainstorms
- Onset of Sea Breeze for Aviation

Thank You!

THE END