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Outline 
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• Conventional machine learning methods VS. deep learning methods 

 

• Case studies 
1. Identifying roads from aerial photos 

2. Inspecting what in the image leads to the prediction (identifying 
residential buildings from aerial photo) 

3. Predicting overflow occurrence of green stormwater infrastructures 
(GIs) using rainfall time series using deep learning methods 

4. Predicting outflow rate from GIs using conventional machine learning 
methods (for comparison) 

5. Predicting outflow rate from GIs using deep learning methods 
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Introduction 

• Deep learning is a subfield of machine learning 

 

• Machine learning (ML) can be defined as the science of using various 
mathematical models, without explicitly programming them, to learn 
the statistical structure from the data 

 

• The objective of ML is to find a suitable function 𝒇 that maps an input 
random variable 𝑿 to an output random variable 𝒀 (such as a class 
label, or a value) that is more useful for the task of interest 
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Introduction 

• A machine learning model 𝑓 can be written as: 

𝑌 = 𝑓(𝑋; 𝜃) 

where, 𝜃 is trainable parameter 

• Example: in linear regression, 𝑿 is predictor, 𝒀 is outcome of interest, 𝒇 is 

an linear operation, 𝜽 is a vector containing the slope and the intercept  
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Source:  
OnlineStatBook 
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• In many problems, the dimension of predictor is extremely 
high, where conventional ML models cannot be used directly 
• Images that has many pixels 

• Time series that has many time steps 

 

• To solve this problem, the original predictor is often 
transformed to features using some function ∅, models are 
then built on the transformed predictor, ∅(𝐗) 

   𝑌 = 𝑓(𝑿; 𝜃) → 𝑌 = 𝑔(∅(𝐗); 𝜃′) 
 

 

Introduction 

High dimension Low dimension 



• Example: classifying dogs and cats images 
• 𝐗 is the raw image (which are numbers stored at each pixel) 

• ∅ transforms the raw image into features: color of the image, size of 
the animal, etc. 

• ML models are then built on features ∅(X) 

• ∅ is very difficult to define and is often suboptimal  
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Introduction 

Model 

Output “dog” 

Source: ccdeadelberg.be 

Output “cat” 

Extract 
feature 

Extract 
feature 

•Size of animal 
•Color of animal 
•Size of eyes 
•Size of head  
 
… 
 

Source: akc.org 

You need specialized program (function) to extract features; 
developing them is very expensive! 



Introduction 

• In deep learning models, 𝑋 maps to 𝑌 through successive transformations 

𝑌 = 𝑓 ∅ 3 ∅ 2 ∅ 1 X; 𝜃 1 ; 𝜃 2 ; 𝜃 3 ; 𝜃  

• Each transformation is simple, and can be learned from data 

 

 

7 Source: akc.org 
Complex and expensive rule development is avoided 



• Artificial neural network (ANN), 
is currently predominately used 
in deep learning 
• connected value-processing 

units, i.e., neurons 

 

• Each neuron receives one or 
more numerical inputs and 
produces a numerical output 

 

• A bias is associated with each 
neuron 

 

• The weights (connections 
between neurons) specify how 
much a neuron influences the 
receiving neuron 

 

• The learning process is to find 
the weights and biases using 
training data 
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Introduction 

• Parameters of the 
networks can be found 
using the 
backpropagation method 
and the gradient descent 
optimization algorithm 

 

• Some software and 
programming toolbox are 
developed to automate 
the training process 
• Tensorflow by Google 

• MXNet by Amazon 

• … 
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• Land cover identification is a common task 
in urban hydrology 
• Useful for determining the hydrological 

properties, land use, etc. 

• Setting up green infrastructure 
implementation scenarios  

 

• Currently, this task is commonly 
performed by human or specialized 
software 
• Time-consuming and expensive 

 

• Objective: build a deep learning model for 
identifying roads in catchment aerial 
images 
• i.e., train a model to determine whether 

highways are presented in an image using 
training images with only “highway”/“no 
highway” labels  
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Shayler Crossing Watershed, Ohio, U.S. 

Case study 1: identifying images with roads 



• Convolutional neural networks (CNN) are used in this study to solve 
image classification problems 

• CNN uses a special type of layers, i.e., the convolutional layers  
• Each convolutional layer arranges its output into a 3D tensor of shape 

(ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) to preserve the spatial information of the layer’s 
input 

• Each element in the output tensor of a convolutional layer is 
connected to the elements in a local region of the input tensor 
• Sparse connections significantly reduce the number of parameters 
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Case study 1: identifying images with roads 



• Reduce overfitting using dropout in training 

• When dropout is applied to a layer, in each iteration of gradient update in 
training, a fraction of the nodes will be randomly selected and set to 0, i.e., the 
connections between those nodes and the other nodes are cut off 

• Using dropout, models may be forced to ignore noisy and irrelevant patterns in 
the trained set 
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Case study 1: identifying images with roads 
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Case study 2: making sense what is 
learned by the model 

• A deep learning model is built to identify residential buildings 
• Model accuracy > 93% is achieved 



Model green infrastructure using deep learning methods   

• Urbanization changes the land cover, which leads to more impervious area, less 
vegetation, etc. 
• More surface runoff, less groundwater recharge, more pollution, etc. 

• Green infrastructure (GI) refers to systems and practices that use or mimic 
natural processes that result in the infiltration, evapotranspiration or use of 
stormwater to protect water quality and associated aquatic habitat (U.S. EPA) 

• Process-based models are currently widely-used  

 

Source: jacksonms.gov 
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• Green infrastructures (GIs) can vary significantly in: 
• Type of practices 

• Location in urban catchment, and scale of implementation 

• Design: material type, material depth, scale, drainage area… 

• How to account for the large variabilities in modeling?  

• Does a universal model exist? 

Photos are taken in Wuhan, China, 2018, Hong Kong, China, 2018, 
and New York City, U.S. 2016 

Right-of-way (ROW) bioswales  
in New York City 

Green roofs in Wuhan, 
China 

Porous pavement in Hong Kong, 
China 
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Model green infrastructure using deep learning methods   



• Performances of GIs are affected by their highly variable designs, complex 
hydrological processes and the external environment 

• To account for the characteristics of GIs, a desired process-based model 
should be flexible, high-resolution, and able to be integrated with other 
hydro-environmental models 

• Developing and using such complex model, however, require lots of efforts in 
model development, data collection, and model setup 
• In practice, simpler and more specialized models are commonly used 
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Model green infrastructure using deep learning methods   



•ML methods can use observed data of the studied 
system to find the connections between the system 
state variables; e.g., 
• The connections between the instantaneous outflow rate and the 

preceding rainfall time series 

• The connections between water level in bioretention cell and rainfall 
and evaporation time series 
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Model green infrastructure using deep learning methods   



Output 

Input time series 

Output 

Input time series 

• An example: 
• Output variable: instantaneous outflow rate from a GI 

• Input variables: the preceding 3-day rainfall time series 

• Model: a function that maps the input rainfall time series to an output 
discharge value 

• Training, validation and testing data: rainfall and runoff observations 

Output 

Input time series 
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Model green infrastructure using deep learning methods   



• Central Kitsap County Campus 
(CKCC) bioretention and porous 
pavement site in the U.S. 

• High temporal and spatial 
resolution (5-min and meters) 

• Multiple small scale GI practices 
of different types 

• Performances are potentially 
affected by shallow groundwater 

• Binary observation: overflow/no 
overflow in bioretention cell 

• Lack of field measurement (e.g., 
infiltration rate, soil field 
capacity) 

 

• Building a process-based 
hydrological model for this site 
requires too much effort! 

Case study 3 Predicting overflow occurrence using high-resolution 

rainfall time series  

Source: Zhang et al., 2018;  
DOI:10.1016/j.jhydrol.2018.09.006 
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• Predict if overflow occurs in a 
bioretention cell using 1-day 5-
min resolution rainfall time 
series 

 

• Neural networks directly 
transform the rainfall time 
series (i.e., a series of 
numbers) to a label “overflow” 
or “no overflow” 
• i.e., determine whether a time 

series causes overflow or not, 
i.e., a classification problem 

Rainfall time series 
registered as overflow 

Rainfall time series 
registered as no overflow 
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Case study 3 Predicting overflow occurrence using high-resolution 

rainfall time series  



Model Input 

Trained using 
training data  

Output 

0.15478 

0.20021 

0.01415 

Likelihood of 
overflow 
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Case study 3 Predicting overflow occurrence using high-resolution 

rainfall time series  



• 162 neural networks with different numbers of hidden nodes, types of 
activation function, batch sizes were trained for different epochs 

• More than 96% accuracy for both the training and testing sets; good kappa statistics 

• Structure (architecture) of network affects the model performance 

• Neural network design currently heavily relies on the trial-and-error approach 
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Activation function Batch size Epochs Hidden nodes number 

Training Testing 
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Case study 3 Predicting overflow occurrence using high-resolution 

rainfall time series  



• A bioretention cell system in St. Francis 
Apartments, Cincinnati, U.S. is studied 
• High resolution (2-min) inflow and outflow 

monitoring 

• The size of the two bioretention cells are 
relatively large, and the surface layers are not 
flat: lumped layer representation is NOT 
adequate 

 

• To predict q2 using q1, multiple conventional 
ML models (PLS, M5 model trees, random 
forests, cubist, etc.) are used, and the model 
performance are tested using cross-
validation 

Case study 4 Predicting outflow rate using conventional ML methods 

(for comparison)   

Bioretention cell 1 

Drainage area 

Bioretention cell 2 

A grass slope 

Flow monitoring: q1 

Flow monitoring: q2 

Flow monitoring: q3 

Layout of a bioretention cell 
system in Cincinnati, U.S. 
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• The original rainfall and evapotranspiration time series are aggerated into a set of 
features because the dimension of input is high (this is the most difficult part of 
ML) 

• ML models are built on features (NOT the raw data) 

Models performed well; 
cross-validation R2 > 0.7 
and RMSE is small 
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Case study 4 Predicting outflow rate using conventional ML methods 

(for comparison)   



• Predict instantaneous outflow rate at the main outlet using the preceding 
rainfall time series at CKCC site 

• Long short-term memory (LSTM) networks are used to directly project the raw 
input time series into a numerical value 
• LSTM maintains some hidden states that are related to rainfall events in the past 

• LSTM learns the long-term dependency between rainfall in the past and the runoff 

 

Source: Zhang et al., 2018;  
DOI:10.1016/j.jhydrol.2018.09.006 
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Case study 5 Predicting outflow rate using deep learning methods 

(for comparison)   



• The LSTM model performs very well 
• Training set: NSE = 0.79, R2 = 0.79 

• Test set: NSE = 0.78, R2 = 0.77 

• Better than the calibrated SWMM model we built 
 

 

Calibration period Validation period 

26 

Case study 5 Predicting outflow rate using deep learning methods 

(for comparison)   



• Deep learning methods greatly reduce the effort in feature 
engineering, and are especially useful when there are multiple input 
variables or the dimension of input is high 

 

• Machine learning methods (both conventional and deep learning) are 
recommended for catchment where process-based models are 
unavailable or restricted due to limited field measurements or 
censored data 

 

• While building a deep learning model that produces reasonably good 
results may not be difficult, making the best use of data or 
understanding the model’s generalization performance is 

 

• Deep learning is not magic, it is only useful if there is enough data and 
the model is correctly configured. Even if the model can generate 
reasonably good results, it might not have behaved in expected ways 
 

 

Conclusions 
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• We recommend future research to present more applications 
of deep learning in hydrological studies  
• Reporting and archiving the model structures and the model 

performance testing procedures 

• Applying the state-of-art machine learning and deep learning tools, 
model architectures and training methods 

• Look into what is learned by the models and use deep learning as tool to 
discover new knowledge of hydrology 

Recommendations 
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Thank you! 
 
Questions and comments send to: 

Dr. Ting Fong May Chui: maychui@hku.hk 

Yang Yang: yyang90@connect.hku.hk 
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