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P(x)

p(x)
S (K)

SE

SYMBOLS

Observed number of events (used in chi-square statistics)
Lower bound of sample, if any

Expected number of events (used in chi-square statistics)
Frequency factor

Number of class intervals (used in chi-square statistics)

Cumulative probability of an event being less than or
equal to x _

Probability density function

Standard error corresponding to the frequency factor K
Standard error of a fitted frequency distribution
Return period

Event magnitude

Event magnitude at a given return period T

Parameters in a frequency distribution

Population mean

Second central moment of the sample

Third central moment of the sample

Population standard deviation estimated by sample moments



1. INTRODUCTION

The problem commonly faced in engineering design is the
estimation of a design event from fairly short records. The
available data are generally used to fit a curve graphically or
to fit a mathematical frequency distribution.

Graphical methods are simple, visually effective and make no
assumption of distribution type. These advantages are
outweighed, however, by the high degree of subjectivity in the
methods, which is not compatible to the uniformity and
objectivity required in other phases of engineering design. It
is generally stated that mathematical fitting of a standard
frequency distribution is preferable to plotting a graph and
fitting a curve (Chow 1964).

The available data are usually used to fit a fregquency
distribution by estimating the parameters of the frequency
distribution. The distribution in turn is used to extrapolate
the design event from the recorded events. Various frequency
distributions have found their application in the estimation of
the magnitude of a design event in hydrology, meteorology, air
pollution, oceanography as well as in other fields of science and
engineering. Applications to meteorology and related atmospheric
sciences are discussed by Essenwanger (1976).

In fitting a distribution, the statistical parameters have
to be estimated from the sample data. Since the sample data are
themselves subject to error, the method of fitting must be as
efficient as possible in order to minimize these errors.

Yevjevich (1972) listed four techniques of parameter estimation,



in the order of increasing efficiency, as follows :-
(1) graphical,
(2) least sum of squares,
(3) method of moments, and
(4) method of maximum likelihood.

This report describes a number of standard frequency
distributions and the computer programs used in the Royal
Observatory Hong Kong. The distributions are, namely, the
normal, 2-parameter lognormal, 3-parameter lognormal, Pearson
type III, log-Pearson type III, type I extremal (Gumbel) and type
III extremal (Weibull) distributions. Parameter estimation by

the method of moments and the method of maximum likelihood (see,

for example, Yevjevich 1972) is based on computer programs
(Fortran V) given in Kite (1977). Apart from the computation of
the standard error of each of the distributions, the programs
have also been modified to incorporate the chi-square and
Kolmogorov-Smirnov tests in order to assess the goodness of fit.
Program listings and sample outputs are available on request to

the Royal Observatory Hong Kong.



2. FREQUENCY DISTRIBUTIONS

In this section, the frequency distributions are briefly
described. To study them in greater detail, the reader can refer
to Chow (1964), Yevjevich (1972) or Kite (1977).

Once the parameters of a distribution have been estimated
the question is how to use the distribution in frequency
analysis. Chow (1964) proposes a general equation :

x = p+ Ko (1)
T

where x 1is the event magnitude at a given return period T, u ando
T
are, respectively, the population mean and the standard deviation

estimated by sample moments. K is a frequency factor which is a

function of the return period and the parameters of the
distribution.

Conventionally when it is desired to plot observed data on a
graph in order to interpret the data, detect errors, or to have
an idea of which frequency distribution should be used to
describe the data, the ordinate of such a graph usually contains
the event magnitudes (on a linear or logarithmic scale) while the
abscissa will be some measure of the probability of occurrence of
each event or the return period. It is common to use the

following plotting position on the abscissa : m/(N+l), where m is

the rank of the recorded event and N is the total number of years
of data. Then the cumulative probability of an event being less

than or equal to x is :
P(x) = 1-1/T = 1l-m/(N+1) (2)

Discussions on the use of other plotting positions can be found



in Chow (1964), Yevjevich (1972) and Sevruk and Geiger (1981).

In particular, Sevruk and Geiger (1981) note that the differences
between estimates due to different plotting positions are
generally small.

. . . 3n .
The skewness coefficient, given by u3/ #; where u, is the

second central moment and p3 the third central moment, is usually

used as a measure of asymmetry.

2.1 Normal distribution
The probability density function of the normal distribution

is defined as :
2

of2n 202

(3)

where x is the event magnitude, u and ¢ are parameters which

can be shown to be the population mean and the standard deviation
of the variable respectively. The probability corresponding to
any interval in the range of the variate x is represented by the

area under the probability density curve,
X
P(x) =J p(x) dx (4)
-0

Sometimes, the standard normal deviate t, defined as (x-u)/o, is

used in the place of x. The areas under the standard normal
curve for different values of t are available from standard
statistical tables. Comparison with Egn. 1 shows that the
frequency factor K is equal to t for the case of normal

distribution.



2.2 2-parameter lognormal distribution
Sometimes, the causative factors for a variable may act
multiplicatively rather than additively. The variable will then
be the product of the causative factors. Chow (1964) has
provided theoretical justification for the use of the lognormal
distribution, in which the logarithm, 1ln x, is used in the place
of the variable x in the normal distribution. The probability

density function becomes

1 -{1n x ,u'y)2
plx) = exp —
xoy fon 202 )

where uy and o, are the mean and standard deviation of the

natural logarithms of x.

Records may contain zero values and, when taking logarithms,

this becomes negative infinity and cannot be processed.

Kilmartin and Peterson (1972) proposed several ways of treatment,
but all of these affect the parameter estimates. The following
two techniques have been tested by the Office of Water Data
Coordination, U.S. Department of the Interior (1982) and have
less effect on the parameter estimates:

(a) Add 1% of the mean magnitude to all values for
computation purposes and subtract that amount from
subsequent estimates; or

(b) Remove all zeroes and multiply estimated exceedance
frequencies of the remaining by the ratio of the
number of non-zero values to the total number of
values.

This second 'conditional probability' approach has been

discussed in WMO Technical Note No. 98 (1969).



2.3 3-parameter lognormal distribution
Where it is likely that for the variable x there is a lower
boundary, a, but which is unknown, the 3-parameter lognormal
distribution can be used to represent the normal distribution of
the logarithms of the reduced variable (x-a) :

_:_Dn (x-a)-[by] 2

1
pix)= (x-aoyf2m 207 (6)

where p#y and oy are the mean and standard deviation. of the
natural logarithms of (x-a).

This distribution has been found suitable for flood
frequency analysis in Ontario (Automated Business and Engineering

Ltd. 1980).

2.4 Pearson type III distribution

The probability density distribution is of the form

1
al(B)

x= Y )3-1

plx) = { exp-(l%?L) (7)

where a, 8 and ? are parameters to be estimated and fYB) is the
gamma function. If the substitution y=(x-7)/a is made, Eqn. 7

simplifies to

YB-1 oY

S [T T (8)

which is a one parameter gamma function.



2.5 Log-Pearson type III distribution
The logarithms, 1ln x, is used in the place of the variable x
in the Pearson type III distribution. The resulting probability

density distribution is

-1

The U.S. Federal Water Resources Council (1967) recommends
the use of the log-Pearson type III distribution in the standard
flood frequency analysis. Flood studies by the Natural
Environment Research Council of the United Kingdom (1975) also
indicate that this distribution gives good fit to the data. Kite
(1977) notes, however, that this choice is subjective to some
extent as no rigorous statistical criteria exists on which a
comparison of distributions can be made.

For treatment of occasional zero values of x, the reader

should refer to Section 2.2.

2.6 Type I extremal (Gumbel) distribution

Suppose from N samples each containing n events the maximum
(minimum) event in each sample is selected. As n increases, the
distribution of the N maxima (minima) approaches a limiting form.
The type of the limiting form would depend on the type of the
initial distribution of the n.N values. The distribution type of
the maxima (minima) is given by the functional equation-:

n
p (x) = P(ax + b)) (10)
n n

where a and b depend on n.
n n



Fisher and Tippett (quoted in Yevjevich 1972) have shown
that there are three possible solutions to Egn. 10. These are
known as types I, II and III extremal distributions. The type I
distribution is unbounded, the type II has an upper limit and the
type III has a lower limit.

The type I distribution results from any initial
distribution of exponential type which converges to an
exponential function as x increases. Examples of such initial
distributions are the normal and the lognormal distributions.

Logically, the form for type I distribution satisfying Eqn. 10 is

(11)
P{x) = exp [-exp - a(x-B)J

and

plx) aexp[-a(x-ﬁ)-exp-a(x-ﬂ)] (12)

2,7 Type III extremal (Weibull) distribution
In contrast to the type I distribution (Section 2.6), the
type III distribution results from a type of initial distribution
in which x is limited by a lower bound,? . The following form

satisfies Egn. 10 :

o1 X=7.a
Pix) =1 exp[—(§:74 ] (13)
and
p(X) B_ (X )’)a 1exp[ (X" ) ] (14)

where a, B and ? are parameters to be estimated.



Expressed in a slightly different way, this distribution can

deal with minimum events :
=1-L1= (Xt e
Px) = 1-L exp[(ﬂ L) ] (15)

where P(x) is the cumulative probability of an event being less

than or egqual to x.



3. MOMENTS, VARIANCE, FREQUENCY FACTOR
AND CONFIDENCE LIMITS
Derivation of analytical expressions for the sample mean,
higher order moments, skewness, frequency factor and the variance

of a T-year event can be found in Kite (1977) and in Yevjevich

(1972).
In particular, the variance of a T-year event x is derived
T
from moment estimates by assuming x a function of the first

T
three moments of a distribution and the return period T.

To compute the confidence limits, an empirical method is

often used which computes the standard error of x(K), S(K), and
then assumes that the T-year event is normally distributed with
mean x(K) and standard deviation S(K) so that the confidence
interval is given by

X (K) + tS(K) (16)
where t is the standard normal deviate at the required confidence
level. This method has been tested (Kite 1975).

The treatment of suspected outliers and broken record is

suggested in Chapter V of Guidelines for Determining Flood Flow
Frequency published by the U.S. Department of Interior Geological
Survey (1982). 1In the case of broken record, it is suggested that
the different record segments be analysed as a continuous record
with length equal to the sum of both records, unless there is

some physical change in the observation site between segments

which may make the total record non-homogeneous.

10



4. GOODNESS OF FIT

To test the fit of a distribution to a particular sample,
the most commonly-used methods are to evaluate the standard

error, the chi-square and the Kolmogorov-Smirnov statistics.

4.1 Standard error
The standard error of each of the distributions is computed

as

" [v]z

(x -yJ

N-h (17)

where x , i=1,...,N are the recorded events, y , i=1l,...,N are
i i
the computed event magnitudes and h is the number of parameters

of the distribution.

4.2 Chi-square test
Before applying this test, the sample is usually classified
into a number of class intervals (k) which are defined in such a
way that each interval corresponds to an equal probability. The
expected number of events in each class interval is thus equal to

E=N/k, N being the sample size. The chi-square statistics (see

Yevjevich 1972)

2 i(A! %)
j=1 j (18)

is therefore simplified into

K K
——z;A (19)
N =1

where A 1is the observed number of events in the jth class
J

11



interval, E_ is the number of events expected from the
theoreticaljdistribution and in this case is equal to N/k.

Yevijevich (1972) suggested that both the number of class
intervals (k) and the expected number of events in each class
interval (N/k) should be at least 5. If the sample size is of
the order 30-60, 6 or 7 class intervals are acceptable numbers
for k. For the test, the number of degree of freedom is given by
k-h-1, where h is the number of parameters in the theoretical
distribution. Yevjevich (1972) has provided chi-square
distribution values for 3 and 4 degrees of freedom.

The class intervals computed for the various distributions

are as follows :

(a) NORMAL : X + tS
where X and S are the sample mean and standard deviation and
t is the standard normal deviate corresponding to the
probability of exceedance, P. In the case of 7 class
intervals (k=7), P is equal to 1/7, 2/7, 3/7, 4/7, 5/7, 6/7

and 1.

(b) 2-PARAMETER LOGNORMAL : exp(x + tS )
n n

where X and S are the mean and standard deviation of the
n n
logarithms of the recorded events.

(c) 3-PARAMETER LOGNORMAL : a + exp(x + ts )
na na

where a is the lower boundary of the distribution and % and
na
S are the mean and standard deviation of the logarithms of
na
the sample x-a.

12



. 2
(d) PEARSON TYPE III : i‘wlﬁn -%)s
1

where x2 is the value of chi-square at probability P and 8/73
degrees of freedom; 7, is the sample skew coefficient.

2
ooy,
(e) LOG-PEARSON TYPE III : exp(xn,[ n 2 ]sg

T Ta

where Y, is the coefficient of skew of 1ln x.

(f) TYPE I EXTREMAL (GUMBEL) : ;,,(WE*‘,S

where y is =-1ln(-1n P) and ¢ and o are the mean and standard
m
deviation of the plotting positions.

(g) TYPE III EXTREMAL (WEIBULL) : 7+ y:'l\a(ﬂ-Y)

where y is -1n(1-P); @, and Y are estimated using the
m
method of moments.

4.3 Kolmogorov-Smirnov test
This test is designed to avoid the loss of information due
to grouping suffered by the chi-square test and is based on
deviations of the sample distribution function P(x) from the
completely specified hypothetical distribution function P (x)

o
(Yevjevich 1972). The Kolmogorov-Smirnov parameter is given by

D = max|P(x)-P (x)] (20)
n o

The test requires that the computed parameter be less than the
tabulated value at the required confidence level. The tabulated

value can be found in standard statistical tables.

13



5, STATISTICAL RESTRICTIONS

Statistical restrictions exist on some of the distributions

(Yevjevich 1972, Kite 1977) and are summarized as follows :

NORMAL - the sample coefficient of skew should be very small (<

0.05) and the sample data should be such that P is very

small;

2- and 3-PARAMETER LOG-NORMAL - the sample coefficient of skew of
the reduced data (ln x or 1ln(x-a))
should be very small (< 0.05) and

positive;

PEARSON TYPE III - this is only unbounded at the upper end for

positive coefficient of skew;

LOG-PEARSON TYPE III - this is only unbounded at the upper end
for positive coefficients of skew of the
logarithms and when the parameter 1l/a is

greater than zero and B is greater than 1;

TYPE I EXTREMAL (GUMBEL) - the sample coefficient of skew should

be very close to 1.13; and

TYPE III EXTREMAL (WEIBULL) - the skewness coefficient for 1ln(x-7)
should be very close to 1.13 for

the distribution to be considered

X-Y
B-vY

approaches (x-a), a = constant.

as log-Gumbel, i.e. when 1n {( )

14



6. COMPUTER PROGRAMS

Computer programs for parameter estimation of the various
distributions have been presented by Kite (1977). The programs
are written in FORTRAN V and have been adapted for use on an
Eclipse S/130 mini-computer at the Royal Observatory. Outputs
from these programs have been checked against those produced by
Kite (1977) using the annual maximum daily discharges recorded
during 1915-1974 at St. Marys River at Stillwater, Nova Scotia.

The names of the programs are :

SOHNOR, SOHLN2, SOHLN3, SOHPT3, SOHLP3, SOHT1E and SOHT3E
the last three characters of each being self-explanatory. Double

precision is employed for all variables except integer variables.

The programs accept card images as input. The first card
consists of a title statement of no more than 80 characters.
The second card defines the number of years of data in format
I5. This is followed by the input data expressed in format

8D10.0.

In each of the above programs, modifications have been made
to include the computation of the chi-square and the Kolmogorov-
Smirnov parameters. The computation of the standard error of all
the distributions is done by a separate program (SOHSER) and is
based on parameters estimated by the method of maximum
likelihood. However, this method does not always provide a
solution for type III extremal distribution, and in these cases,
the method of moments is used to obtain the parameter estimates.

The programs have been applied to annual maximum hourly

rainfall recorded at the Royal Observatory during 1947-1982.

15



Statistical restrictions on the use of a certain
distribution, as described in the last section, are included in
the computer printout as a reminder to the user.

A separate program, T3EMIN, which is based on Egn. 15 for
the type III extremal distribution, can be used to fit minimum

events. Included in this program is the method of smallest

observed drought, as described in Gumbel (1958). The program has

been tested using the annual minimum daily discharges during

1915-1974 at St. Marys River at Stillwater, Nova Scotia.

16



7. DISCUSSIONS AND CONCLUSIONS

Various common frequency distributions have been discussed.
The computer software to fit these distributions statistically
makes use of the method of moments and the maximum likelihood
method. It also takes note of various statistical restrictions
on the distributions. Goodness-of-fit tests are offered to aid
the selection of an adequate distribution for a given data base
and purpose.

In selecting a distribution, a word of caution is perhaps
appropriate. It is normally not known which distribution, if
any, the events naturally follow. Sevruk and Geiger (1981) and
Kite (1977, Chapter 15) review various applications of frequency
distributions to hydrological data and find that no single
distribution is acceptable to all hydrologists. There are no
rigorous statistical criteria on which a comparison of
distributions can be made. Goodness of fit is a necessary but
not a sufficient condition for acceptance of a certain
distribution. This applies equally well to the verification of
estimated design magnitude with actual observation.

Notwithstanding these, the following points can be
considered when a choice has to be made between the
distributions:

(a) whether there is theoretical justification -- e.g. whether
the causative factors for the variate x are additive or
multiplicative, and in the case of extremal distributions whether
the original assumptions listed in Gumbel (1954) are satisfied;

without theoretical justification, a perfect statistical fit may

17



leave the basic physics unrecognized;

(b) three-parameter distributions generally offer greater
flexibility than two-parameter distributions -~ e.g. the normal
distribution (two parameters) is completely and uniquely
specified once the mean and standard deviation are estimated; and
(c) whether the distribution of interest complies with the
statistical restriction(s) described in Section 5.

The computer programs described in Section 6 are available
for use by anyone who is interested in their applications to
analyses of meteorological and other data for design purposes.
Enquiries about details of these programs should be directed to

the Director of the Royal Observatory Hong Kong.

18
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