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Abstract 

 

Cloud genus, visibility and precipitation are important weather elements that can have 

significant temporal and spatial variations. These weather elements are recorded by human 

observers once every hour at manned weather stations. While automatic measurements by 

standard instruments can increase the temporal resolution, due to limited spatial coverage, 

observation of cloud cover or visibility by a single instrument has its limitations. The 

observation of cloud genus is also not available from these automatic instruments. With the 

advancement of deep learning techniques and increasing availability of high-resolution 

weather cameras, many studies have been conducted to use deep learning to identify cloud 

cover, visibility and precipitation automatically. However, these research results might not be 

directly applicable to Hong Kong due to regional differences and associated weather systems.  

This study explores the use of these technologies for automatic weather observations at the 

Hong Kong International Airport (HKIA). 

This study used the weather photos taken by nine high-resolution weather cameras installed 

at HKIA from July 2020 to June 2021. The photos taken between July 2020 and April 2021 were 

labelled according to the hourly SYNOP report. They were then put into training datasets 

based on cloudiness (total cloud cover ≥ 6 oktas or not), visibility (visibility < 5 km or not) and 

precipitation (present weather code ≥ 50 or not). MobileNetV2, a mobile-friendly image 

recognition model pre-trained on the ImageNet dataset, was fine-tuned into three individual 

binary classification models using the aforementioned training datasets. The fine-tuned 

models were then tested using photos taken in May and June 2021. 

Results suggest that the models give reasonable precision and recall on the test datasets, with 

an average precision and recall of 90.6% and 77.4%, respectively for “total cloud cover ≥ 6 

oktas”. With encouraging results from deep-learning-based binary classifications of weather 

photos in this study, models would be trained with a larger dataset to perform multi-class 

classifications of cloud genus, precipitation types and low visibility weather as a next step. 
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摘要 

 

雲屬、能見度和降水類型這三種重要天氣元素常隨著時間及地域有顯著變化。現時有

觀測員當值的氣象站會由觀測員每小時記錄一次這些天氣元素。雖然標準儀器的自動

測量可以提高時間分辨率，但由於空間覆蓋範圍有限，單一儀器的雲量和能見度觀測

也有其局限性，而且這些自動儀器無法觀測雲屬。隨著深度學習技術的進步和高解像

度天氣攝影機越來越普及，不少研究利用深度學習估計雲量、能見度及降水，但由於

地域及天氣系統的不同，這些研究結果未必能簡單套用。本文介紹利用這些科技在香

港國際機場進行自動天氣觀測的初探。 

研究使用 9 個安裝在香港國際機場的高解像度天氣攝影機攝於 2020 年 7 月至 2021 年 6 

月的天氣照片。當中 2020 年 7 月至 2021 年 4 月期間拍攝的天氣照片先根據每小時的 

SYNOP 報告進行標記，然後放入雲量（總雲量是否 ≥ 6 oktas）、能見度（能見度是否 < 

5 公里）和降水（當前天氣代碼是否  ≥ 50）的訓練數據集。所使用的 MobileNetV2 模型

經已利用 ImageNet 數據集預訓練。本研究利用上述訓練數據集，微調 MobileNetV2 成

為三個獨立的二元分類模型，並以 2021 年 5 月和 6 月拍攝的照片進行測試。 

結果顯示，經微調的二元分類模型在用於測試數據集上能給出合理的精確率和召回率，

例如 “總雲量≥ 6 oktas” 的平均精確率和召回率分別為 90.6% 和 77.4%。此研究初探運用

深度學習進行天氣照片的二元分類得到正面成果，希望將來能利用更多數據和方法來

訓練模型，以進行雲屬、降水類型和低能見度天氣等的多元分類。 
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1. Introduction 

Weather plays an integral part in our day-to-day life. Even though weather elements are 

monitored by human observers once every hour at manned weather stations and recorded 

by standard instruments in automated weather stations, the high temporal and spatial 

variability of weather means that local weather might differ from the closest weather station. 

With the gain in popularity of high-resolution cameras, this study explored the potential of 

using weather cameras as affordable sensors to detect weather in Hong Kong. To facilitate 

result verification, a location with both weather cameras and professional and trustable 

weather observation. In this case, the Airport Meteorological Office (AMO), located inside the 

Control Tower of the Hong Kong International Airport (HKIA), was chosen for the study. 

Weather observers perform round-the-clock weather observations at the AMO and record 

their observations in hourly surface synoptic observations (SYNOP) reports. Moreover, the 

Hong Kong Observatory (HKO) had installed nine new high-resolution weather cameras at 

HKIA in 2020, providing weather images of the airport in all weather.  

Among the various weather elements recorded in SYNOP, cloud, visibility and present weather 

are still greatly dependent on manual observations by weather observers. At the same time, 

the use of camera images to detect these weather elements has been explored in many recent 

studies.  Using images captured by a consumer camera, Onishi et al. [1] proposed a deep 

Convolutional Neural Network (CNN) based approach to estimate cloud coverage with 

reasonable skills. Ibrahim et al. [2] developed a CNN based on residual learning using 

ResNet50 architecture to extract various weather and visual conditions. Their models can 

detect precipitation with an accuracy of 93.2% and a false positive rate of 6.8%.  Chaabani et 

al. [3] attempted a CNN approach using the AlexNet architecture to estimate the visibility 

range in five discrete classes during foggy daytime conditions. They achieved better 

performance than using an Artificial Neural Network (ANN) approach. Xiao et al. [4] even 

proposed a novel CNN called MeteCNN to classify 11 weather phenomena such as fog/smog, 

rain, snow, hail and lightning with an average precision and recall of 93%.  

The research aims to develop an automatic system that can deduce cloudiness, visibility and 

precipitation with skills through weather images. The light-weight MobileNetV2 was chosen 

as the base model of this study. Trained and verified with local data, the proposed models are 

more adapted to the local specificities and associated weather systems of Hong Kong.  

 

2. Data Preparation 

Image data collection and proper annotation played a vital role in this study. 

Twelve months of weather photos were acquired from July 2020 to June 2021 to ensure the 

datasets contained images of different weather conditions. The images were taken by nine 

high-resolution weather cameras installed at HKIA in Chek Lap Kok. The cameras were pointed 

in different directions to give a panoramic view of the airport when put together. They 

captured images at 30-second intervals. However, for easy cross-reference to SYNOP reports, 

only photos taken closest to the zeroth minute of every hour were used in this study. Figure 

1 shows the location of the cameras in HKIA. 
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Figure 1 – Location of the nine high-resolution cameras installed at Hong Kong International Airport that were used 
in this study  

 

The AMO is located at T3 level of the South Aerodrome Control Tower at HKIA. Weather 

observer at AMO reports weather observations in hourly meteorological reports called SYNOP. 

These reports contain surface weather encoded in agreed formats for the regular exchange 

internationally [5]. A SYNOP report includes temperature, barometric pressure, visibility, 

cloud cover, cloud genus and weather type. These reports were used to label weather photos 

for model training and verify model performance with the test dataset.  

Around 52700 images from July 2020 to April 2021 were utilized for model training and 

validation. Each image was labelled using the SYNOP reports based on cloudiness, visibility 

and precipitation when the photo was taken. The photos were annotated for each weather 

element of interest into two categories, namely positive and negative, according to the criteria 

given in Table 1. The number of training, validation and test samples of each category are also 

included in the Table.  Figure 2 shows sample images of the different weather categories. 

The remaining 13200 photos from May to June 2021 form the test dataset. They were used 

to test the performance of the trained weather classification models.  The test images were 

never used in training and validation.  

 

Weather 
condition 

Category Criteria Number of 
training and 
validation 
samples 

Number of 
test 
samples 

Visibility positive visibility < 5 km 981 170 

negative visibility >= 5 km 51693 12974 

Cloudiness positive total cloud cover >= 6 oktas 31054 10127 

negative total cloud cover < 6 oktas 21639 3023 

Precipitation positive precipitation, ww code >=50 2299 1206 

negative no precipitation, ww code <50 50375 11948 
Table 1 Classification criteria and distribution of different weather conditions during image annotation 
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Precipitation 

  
Figure 2 - Sample weather photos in the positive and negative categories of the three focused weather elements of 
this study – visibility, cloudiness and precipitation 

 

3. Methodology 

3.1.  Base model – MobileNetV2 

This study leveraged MobileNetV2, a lightweight visual recognition convolutional neural 

network (CNN) customized for resource-constrained environments such as mobile phones, to 

train and validate weather detection models.  

Unlike standard CNNs, MobileNetV2 uses depthwise separable convolutions to reduce the 

number of convolution parameters and computational cost while preserving similar 

information in generating feature maps. This is achieved by decomposing a large convolution 

matrix (with a size of 𝑊 × 𝐻 × 𝐾 × 𝑁) into a small depthwise convolution (with a size of 

𝑊 × 𝐻 × 𝐾) and a small pointwise convolution (with a size of 𝐾 × 𝑁), where 𝑊, 𝐻, 𝐾  and 𝑁 

denote the width, height, number of channels of a feature filter, and the number of feature 

extractors, respectively. According to Sandler et al [6], the number of parameters is reduced 

by a factor of (
1

𝑁
+

1

𝑊×𝐻
). Practically, 𝑊 and 𝐻 are much smaller than 𝑁. In the case where 

𝑊 = 𝐻 = 3, the number of parameters and computational cost of MobileNetV2 are around 

8 to 9 times smaller than those of standard CNNs. 
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3.2.  Model Training using Transfer Learning 

MobileNetV2 model was pre-trained with ImageNet, an open-source dataset consisting of 

more than 14 million labelled images in over 20000 label categories. As a result, the model 

parameters already contain low-level abstract features of everyday objects that humans 

cannot easily generate and could be fine-tuned with other image datasets and applied to 

specific image classification problems. 

In order to perform visibility, cloudiness and precipitation classification, the pre-trained 

MobileNetV2 model was fine-tuned into three individual binary classification models using 

the data mentioned in Section 2 through transfer learning techniques.  

Fifty epochs of training were conducted to fine-tune each model. In each epoch, training data 

were randomly split into two sets, with 80% used for training and the rest for validation. Binary 

cross entropy loss, a loss function that is commonly used for classification problems, was used. 

A batch of 16 training images was used as input in every training step, and the loss was 

updated.  

The models were evaluated using the validation dataset and area under the precision-recall 

curve (AUPRC). AUPRC was chosen as it suits problems with imbalanced data. The best model, 

namely the one with the highest AUPRC score among the models trained in the 50 epochs, 

was exported for inference. Figure 4 shows the training workflow.  

 

 

Figure 3  Model training workflow 

 

3.3.  Evaluating the exported models using test dataset 

The best-trained model for each of the three weather elements of interest, namely cloudiness, 

visibility and precipitation, was evaluated using an unseen test dataset of weather photos 

taken between May and June 2021.  

The inference result of individual photos was then evaluated against reported weather 

conditions in SYNOP reports. As the output of the binary classification model is a confidence 

score between 0 and 1 that depicts how confident the model is on the image belonging to the 

“positive” class, a confidence threshold is needed to convert the value into an outcome. For 

simplicity, a threshold of 0.5 was used in this study. For example, if the precipitation model 

gives a confidence score greater than or equal to 50%, the image would be put into the 
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“precipitation” category. A less than 50% confidence score would put the image into the “no 

precipitation” category.  

By comparing model inferences and the ground truths given in SYNOP reports, confusion 

matrices can be generated to summarize the results and hence the performance of the 

exported classification models. Table 2 shows a general confusion matrix. 
 

Actual Positive Actual Negative 

Inferred Positive True Positive (TP) 
(Correct inferences) 

False Positive (FP) 
(False alarms) 

Inferred Negative False Negative (FN) 
(Misses) 

True Negative (TN) 
(Correct inferences) 

Table 2 - A confusion matrix shows the distribution of true positive, false positive, false negative and true negative  

The performance of the models was evaluated by three performance indices - accuracy, 

precision and recall.  

Accuracy measures the proportion of both correct positive and negative inferences out of all 

samples. The following equation defines the accuracy of a model: 

Equation 1 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
   

Precision corresponds to the percentage of correct classifications over all inferred positive 

images. A model with high precision has a low probability of false alarm. The following 

equation defines the precision of a model: 

Equation 2  Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall indicates the ability of a model to infer the actual positive photos correctly. A model 

with high recall has a low probability of miss cases. The following equation defines the recall 

of a model: 

Equation 3 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Of the different performance indices, accuracy is only meaningful for evaluating the 

cloudiness classification model since the number of positive and negative samples are 

comparable. However, precision and recall are more suitable for evaluating visibility and 

precipitation classification models due to the largely uneven distribution of their positive and 

negative samples. 

 

4. Results 

The trained models were tested by a test dataset made up of weather photos taken by the 
same nine cameras between May and June 2021. These test data were never used in model 
training. This section discusses model performances as evaluated by the test dataset.   
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4.1.  Overall Model Performance 

Overall model performance was evaluated by testing the models by photos taken from the 
nine cameras in HKIA between May and June 2021. An overview of their performances is 
plotted in Figure 4, while confusion matrices are included in Appendix A.1. The performance 
of the three models will be discussed in detail in this section.  

 

Figure 4  - Overall 
performance of the 
visibility, cloudiness 
and precipitation 
models 

 

4.1.1. Visibility and Precipitation models 

As shown in Table 1, there are data imbalances in both training and testing samples of visibility 
and precipitation. The majority of the photos were in the “visibility >= 5km” and “no 
precipitation” categories. Coupling with the fact that the models were highly skillful in 
inferring these two categories of weathers, accuracy was over 90% in both precipitation and 
visibility models. However, as precipitation and low visibility have a higher impact on day-to-
day lives, these two weather categories are of higher interest in this study. As a result, 
precision and recall are more representative in evaluating visibility and precipitation models.  

The visibility model was fairly skillful in inferring photos with actual low visibility observations 
correctly, having a recall of 67.8%.  However, the model gave a significant number of false 
alarms, as indicated by the low precision of 44.7%. The model classified quite a number of 
photos with actual visibility of 5km or above in the “low visibility” category. The high false 
alarm ratio of the visibility model will be discussed in more detail in Section 4.2. 

On the other hand, the precipitation model had a relatively low ratio of false alarms, as 
indicated by an 82.7% precision. However, given the low recall of 44.3%, the model might be 
too strict and incorrectly inferred a significant number of photos with actual precipitation 
observations. The high rate of miss cases will be discussed in more detail in Section 4.2. 

4.1.2. Cloudiness model 

The cloudiness model was the most skillful among the three models. Precision and recall of 
this model were 90.6% and 77.4%, respectively.  

Analyzing the diurnal variation of cloudiness model performance indicated that the model 
performed better during daylight hours, with higher recall and accuracy values than nighttime. 
Moreover, model performance in different actual cloud cover was examined. It is observed 
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that the model was more skillful in clear cut cases with an actual total cloud cover of just 1-2 
oktas or 8 oktas and weaker performances in boundary cases with an actual total cloud cover 
of 5-6 oktas.  The performance of the cloudiness model at different periods of a day is shown 
in Figure 5, while its performance in different actual cloud cover is shown in Figure 6.  

 

Figure 5  - Diurnal 
variation in 
performance of the 
cloudiness model 

 

 
 

Figure 6 - Performance 
of cloudiness model in 
different actual total 
cloud cover 
conditions. Note that 
0 okta had not been 
observed during the 
period when the 
testing data set was 
collected.  

 

 

4.2.  Individual Camera Performance 

In order to better understand the strengths and weaknesses of current models, this section 
analyses the model performance of each individual camera. 

4.2.1. Visibility model 

When visibility differs in different directions, the lowest visibility would be coded into the 
SYNOP report. Each camera pointed to a fixed direction with a set elevation. It would be 
impossible to determine the synoptic visibility from an image when the camera was not facing 
the direction with the lowest visibility.  

Figure 7 shows an example of this discrepancy. Shower was recorded at HKIA around noon 
local time on 24 May 2021, lowering synoptic visibility to 3900m. Although the actual visibility 
according to SYNOP fell into the low visibility category, the model could only infer low visibility 
from two of the nine cameras.  The remaining seven were counted as false negatives. 
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Nevertheless, some of those false negative images could clearly show mountains more than 5 
km away from HKIA, indicating visibility in the direction those cameras faced did not fall into 
the low visibility category.  

 

  

Figure 7  - Weather photos of the nine cameras and their corresponding classifications inferred by models at 12:00 
noon on 24 May 2021 

 

 

Figure 8  - 
Performance of the 
visibility model based 
on individual cameras 
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By analyzing the performance of the visibility model on images taken by different cameras, it 
is noticed that model inference scores were especially low in NLidarW and R2W cameras. Both 
of these cameras face west. Moreover, upon further analysis, it is found that most false 
positive cases concern photos taken by these two cameras between 17:00 and 19:00 local 
time. The time frame coincides with the period around sunset, where the two west-facing 
cameras depict areas just above the horizon as bright white patches due to overexposure. The 
visibility model misinterpreted these white patches as a feature of low visibility and inferred 
wrongly. Figure 8 shows the performance of the visibility model by camera. Figure 9 shows 
samples of early evening false positive cases. Note that despite the incorrect inferences in 
Figure 9, confidence levels were low. 

The camera-based confusion matrices of the visibility model are included in Appendix A.2. 

 

Figure 9  - Samples of false positive inferences for photos taken from the two west-facing cameras, NLidarW and 
R2W in early evening 

 

4.2.2. Precipitation model 

By studying precipitation model performance in inferring photos from different cameras, it is 
noted that recall was especially low in the two cameras NLidarSW and T3SW. The model 
missed many cases of actual precipitation captured by these two cameras. Both of the two 
cameras in question were sky-facing and contained few land features. The model might rely 
on subtle feature changes on land to infer precipitation, leading to poor performance in 
images captured by these two cameras. The performance of the precipitation model based on 
camera is shown in Figure 10. 

The camera-based confusion matrices of the precipitation model are included in Appendix A.4.  
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Figure 10  - 
Performance of the 
precipitation model 
based on individual 
cameras 

 

 

4.2.3. Cloudiness model 

As illustrated in Figure 11, the performances of the cloudiness model did not exhibit much 
variations between cameras. The adaptive skill of the cloudiness model might be attributed 
to cloudiness observation being less affected by background and the more object-like feature 
of cloud as compared to visibility and precipitation. In contrast, image-based visibility and 
precipitation estimations are indirect and abstract as they involve recognizing background 
features that are greatly dependent on the camera. Moreover, the scarcity of positive samples 
in the training dataset of these weather conditions makes the estimation more challenging.  

Camera-based confusion matrices of the cloudiness model are included in Appendix A.3. 

 

Figure 11  - 
Performance of the 
cloudiness model 
based on individual 
cameras  
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5. Alternative models 

In view of the findings discussed in Section 4, this section explores improving model 
performance by preparing the models differently and by training the models in alternative 
ways. 

5.1.  Training models with panoramic photos 

Three models, one for each weather element of interest, were trained using panoramic 

photos. These 360-degree photos were formed by stitching photos from four different 

cameras, namely R2E, R1E, R1W and R2W, located on HKIA Control Tower. Figure 12 and 

Figure 13 show sample stitched panoramic photos. 

 

Figure 12  - Day time panoramic photo created by combining photos from R2E, R1E, R1W and R2W cameras 

 

Figure 13  - Nighttime panoramic photo created by combining photos from R2E, R1E, R1W and R2W cameras 

 

Figure 14  - 
Performance of 
“panorama” 
models 

 

Compared with original models, training models with panoramic photos resulted in a higher 

recall, hence a lower percentage of miss cases, in the precipitation model. The panoramic 

cloudiness model also has a slightly better recall than the overall cloudiness model. However, 

the panoramic model did not bring significant improvement to inferring visibility.  
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5.2.  Training camera-specific models 

The three models mentioned in Section 4.1 were trained with images from all nine cameras 

using the same training dataset. This exercise explored if inference performance would 

improve if models were trained with more specific data, specifically by training one model for 

each weather element of each camera. T3SW camera was selected as a pilot, training one 

model for each weather element of interest.  

Figure 15 shows the performances of the three models. 

 

Figure 15  - 
Performance of 
models trained 
only with T3SW 
camera 

 

The T3SW-specific model showed significant improvement in inferring precipitation images 

taken by the T3SW camera with a massive boost in precision and recall. As for cloudiness, the 

T3SW-specific model had a better recall but lower precision than the overall model in inferring 

T3SW images. The T3SW-specific visibility model performed similarly to the original model.  

The lack of significant improvement in T3SW-specific cloudiness and visibility models might 

be attributed to the scarcity of data for model training. 

 

5.3.  Enlarging training dataset 

Only one year of data was available when the models were first developed. As a result, the 

first ten months of data was used to form the training dataset and the remaining two months 

of data made up the test dataset. We had explored extending the training dataset to one year 

to reduce the seasonal differences between training and testing data. The models were tested 

with images taken between July and September 2021. Figure 16 shows the initial analysis of 

the performance of these models.  
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Figure 16  - 
Performance of 
models trained 
with one year 
(July 2020 – June 
2021) of data 
and tested with 
images taken 
between July 
2021 and 
September 2021 

 

The performance of these models did not show significant improvement from original models 

trained with ten months of data. Recall of both cloudiness and precipitation models had 

improved. Nevertheless, at the same time, the precision of these two models had decreased 

compared to the original models. As for the visibility model, precision had improved while 

recall dropped.  

5.4.  Other methods to be explored 

Moving forward, we plan to optimize the precision-recall curve (P-R curve) of the models by 

varying the confidence level threshold based on false alarm and miss case tolerance.  

Moreover, we will evaluate the performance of other pre-trained image classification models 

on categorizing visibility, cloudiness and precipitation. 

An internal development site has already been set up to test the trained models for inferring 

weather classifications using real-time weather photos taken at 30-second intervals. Their 

performance is being continuously monitored. Preliminary case studies supported that the 

current model could generally capture the timing of cloudiness, visibility and precipitation 

conditions. 

6. Conclusions and Future Directions 

Judging from the various performance indices, the deep-learning based classification models 
trained using high-resolution photos in this study had reasonable skills in inferring total cloud 
cover and fair skills in inferring visibility and precipitation.  

A few lessons were learnt from this study.  Overexposure in west-facing cameras around 
sunset had affected visibility model performance.  Moreover, directional variation of visibility 
had affected the apparent performance of the model when verified against SYNOP. The 
precipitation model performed better with images that capture the ground but did not work 
well with sky-facing cameras. The low confidence levels for wrong inferences suggested that 
the models are sensitive to changes in visibility and precipitation. The cloudiness model was 
stronger in inferring total cloud cover during daytime than at night.  
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We had explored training models with panoramic photos, training camera-specific models and 
enlarging training dataset to cover a one-full year of weather. The panoramic model improved 
recall of precipitation and cloudiness inferences. The camera-specific precipitation model 
significantly outperformed the overall precipitation model. Other models did not show 
significant improvement from the three original models.  

On top of optimizing weather classification models on visibility, cloudiness and precipitation, 
we envision providing a semi-quantitative estimation of these weather elements by extending 
the models to multi-class classifications. The use of meteorological instruments jointly with 
deep-learning based classification models will be explored in the future to improve the 
automatic reporting capabilities of these models.  Other directions under consideration 
include classifying cloud genus, identifying precipitation types and low visibility weather types.   
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Appendix A.  Confusion matrices 

Appendix A.1. Overall Models 

Visibility 
Actual 

Vis < 5km Vis >=5km 

Inferred 
Vis < 5km 122 151 

Vis >=5km 58 12823 

Cloudiness 
Actual 

Total Cloud Cover 
>=6 oktas 

Total Cloud Cover  
<6 oktas 

Inferred 
Total Cloud Cover >=6 oktas 7839 816 

Total Cloud Cover <6 oktas 2288 2207 

Precipitation 
Actual 

Precipitation No precipitation 

Inferred 
Precipitation 534 112 

No precipitation 672 11836 

Table 3 - Confusion matrices of the overall visibility, cloudiness and precipitation models in inferring photos taken 
by the nine cameras in HKIA between May and June 2021.  

Appendix A.2. Visibility Model 

Visibility 
Actual Actual Actual 

Vis 
< 5km 

Vis 
>=5km 

Vis 
< 5km 

Vis 
>=5km 

Vis 
< 5km 

Vis 
>=5km 

Camera NLidarSW NLidarW NLidarNE 

Inferred 
Vis < 5km 15 6 14 39 12 7 

Vis >=5km 5 1435 6 1402 8 1434 

Camera T3SW R2W R2E 

Inferred 
Vis < 5km 11 5 15 45 15 17 

Vis >=5km 9 1437 5 1397 5 1425 

Camera R1W R1E R1EB 

Inferred 
Vis < 5km 17 6 12 13 11 13 

Vis >=5km 3 1436 8 1429 9 1428 

Table 4- Confusion matrices of the visibility model from photos taken by each of the 9 cameras in HKIA from May-
June 2021.  
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Appendix A.3. Cloudiness Model 

Cloudiness 

Actual Actual Actual 

Total Cloud 
Cover >=6 

oktas 

Total Cloud 
Cover <6 

oktas 

Total Cloud 
Cover >=6 

oktas 

Total Cloud 
Cover <6 

oktas 

Total Cloud 
Cover >=6 

oktas 

Total Cloud 
Cover <6 

oktas 

Camera NLidarSW NLidarW NLidarNE 

Inferred 

Total Cloud 
Cover >=6 oktas 

793 76 878 90 975 106 

Total Cloud 
Cover <6 oktas 

332 260 247 246 150 230 

Camera T3SW R2W R2E 

Inferred 

Total Cloud 
Cover >=6 oktas 

825 75 944 90 943 98 

Total Cloud 
Cover <6 oktas 

301 261 182 246 182 238 

Camera R1W R1E R1EB 

Inferred 

Total Cloud 
Cover >=6 oktas 

871 108 806 102 804 71 

Total Cloud 
Cover <6 oktas 

254 228 319 234 321 264 

Table 5- Confusion matrices of the cloudiness model from photos taken by each of the 9 cameras in HKIA from May-
June 2021.  

 

Appendix A.4. Precipitation Model 

Precipitation 
Actual Actual Actual 

Precipitation 
No 

precipitation 
Precipitation 

No 
precipitation 

Precipitation 
No 

precipitation 

Camera NLidarSW NLidarW NLidarNE 

Inferred 

Precipitation 2 0 53 2 59 4 

No 
precipitation 

132 1327 81 1325 75 1323 

Camera T3SW R2W R2E 

Inferred 

Precipitation 0 0 89 29 88 11 

No 
precipitation 

134 1328 45 1299 46 1317 

Camera R1W R1E R1EB 

Inferred 

Precipitation 93 34 94 25 56 7 

No 
precipitation 

41 1294 40 1303 78 1320 

Table 6- Confusion matrices of the precipitation model from photos taken by each of the 9 cameras in HKIA between 
May and June 2021. 
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