

1. 天氣觀測簡介

天氣觀測就是在指定的時間對大氣狀況進行詳細觀察,然 後準確地用文字或數據記錄下來,編成一個天氣報告。天 氣觀測通常是指地面氣象元素的觀測,主要包括溫度、 風、能見度、天氣狀況、雲、雨量和氣壓。這些資料對天 氣預測十分重要。

天文台亦有量度日照時間、太陽總輻射、紫外線指數、最低草溫、土壤溫度、蒸發量、可能蒸散量和海面溫度。天文台在京士柏進行高空氣象觀測,搜集得的資料對天氣預報十分重要。

本港有一隊志願觀測船隊進行海上觀測。除了一般的氣象元素外,船隊還量度海水溫度,觀測風浪和湧浪等。

日照計

日射總量表

紫外線表

最低草溫 溫度表

土壤溫度 溫度表

蒸發皿

蒸散量 測定裝置

香港天文台的職員畫夜不停地觀測天氣。京士柏的高空氣象觀 測每 12 小時進行一次,總部的地面觀測每小時一次,而香港 國際機場的例行天氣報告就每半小時一次。地面的天氣觀測要 在 10 分鐘內完成報告,經專用電訊網絡傳送到本港及世界各 地。在特殊情況下,例如本港天氣突變至影響航班升降、有飛 機意外或任何嚴重事故,我們都會即時作一個特別觀測,作為 証據或調查所需的參考資料。

天文台除了在總部、機場和京士柏進行觀測外,亦設了立很多自動氣象站不停地收集資料,經網絡或微波傳回總部。雖然自動氣象站量度溫度、風、雨量和氣壓的功能卓越,但 在觀測能見度、天氣狀況和雲方面仍需人手操作。

1.1 各氣象元素的觀測方法

氣象元素	觀測儀器 / 方法			
溫度	水銀/酒精溫度計、白金電阻溫度計			
風	風向標、風力表、風袋			
能見度	目測、跑道視程觀測儀			
天氣狀況	目測、雷電探測器、雷電探測系統、下雨警報器			
雲	目測、探雲燈、雲幕儀			
雨量	各種雨量計			
氣壓	各種氣壓計、氣壓表			

1.2 天氣報告

因應航空氣象或天氣預測的需要,天文台職員每次要把天氣觀測的 記錄編成:

- 1. 世界氣象組織的地面天氣報告(SYNOP-Surface Synoptic Observations),每小時經「全球氣象電訊系統」傳送到鄰近地區及在「天氣觀測時」(即 UTC* 00,03,06,09,12,15,18,21 時)傳送到世界各地的氣象局
- 2. 國際民用航空組織的例行天氣報告(METAR- Aviation Routine Weather Report),每 半小時經航空指定電訊網絡傳送到民航署、航空公司和世界各地的機場

為使各位能掌握天氣觀測的基本技巧,我們特別預備了一個簡化的民航例行天氣報告表 (METAR)給大家在實習時使用。

2. 天氣觀測的用途

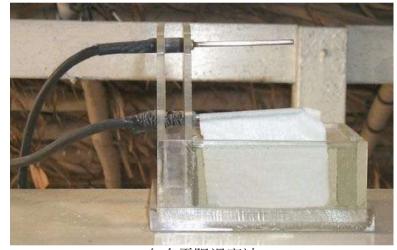
- 2.1 天氣預測:全球各地的氣象台都會在同一時間進行天氣觀測,互相交換資料,用電腦 分析及製成天氣圖,供天氣預報員使用。
- 2.2 航空氣象:香港機場氣象所每半小時的例行天氣報告即時傳送到控制塔、本地的航空公司和世界各地的機場,以便他們傳送給正在前來本港的機組人員參考及安排航班的 負載。
- 2.3 氣候學:天文台百多年來的天氣觀測記錄累積成一個寶貴的資料庫,編成本港的平均 氣候表,供各界人士參考。例如:某一項天氣情況是否異常或刷新記錄,可以和氣候 資料庫的記錄作比較而得知。
- 2.4 工程:工程界人士在設計能承受強風的建築物、鋪設能應付大雨的去水渠、填高能避免大海潮所淹的機場等項目都會利用天文台有關的數據。
- 2.5 法律證據:香港法例第八章-訴訟證據條例第 23 條規定,無論在刑事或民事訴訟中, 提交天文台所存氣候記錄之證謄本作為證據,被法庭接納而毋須再作證明。

3. 溫度

溫度資料包括乾球溫度、濕球溫度、每日最高和最低溫度。

乾球溫度 -- 即空氣的溫度。因常用的溫度表的水銀儲在玻璃球內,所以稱為乾球溫度。

濕球溫度 -- 用一塊濕布包著這玻璃球而量度到的溫度。濕球的溫度因包著的濕布上的水 蒸發而降低,環境愈是乾燥,濕球布上的水蒸發愈快,濕球溫度就愈低。從乾 濕球的溫度差距,我們可以算出露點溫度和相對濕度。


露點溫度--把空氣冷卻到出現露滴時的溫度。出現露滴表示在這溫度水氣已達飽和狀態。

最高溫度 -- 最高溫度表接近球部的細管極為狹窄,降溫時水銀柱在此斷開,最高溫度記錄 便可保留。

最低溫度--最低溫度表以酒精作為測溫液,細管內放置了一個游標表。當溫度上升時,膨脹的酒精可以通過它而上,當溫度下降時,酒精液面的表面張力比游標與管壁的摩擦力強,把游標帶下,最低溫度記錄便可保留。

白金電阳溫度計

水銀溫度計是量度溫度的標準儀器,它的好處是反應快及容易打理。在需要遙測數據的情況下,就要採用白金電阻溫度計,但白金電阻溫度計需要時常清理、更換濕球布及加添蒸餾水。

在編寫天氣報告時,我們把乾球和露點溫度用"/"前後分隔編成 T'T'/T'dT'd一組。

代码	馬	內容	單位	數值
T'	Γ'	乾球溫度	攝氏度 (℃)	2 位數字,0°C 以下加 M 左前
T'd	Γ'd	露點溫度	攝氏度 (℃)	2位數字,0℃以下加 M 在前

例:07/M01 = 溫度攝氏 7°C,露點-1°C。

4. 風

流動的空氣就是風。由於不同地方的受熱程度、空氣 密度變化、氣壓差別、大氣層活動、地勢、障礙物等 各種原因,不同地方的地面風的方向和速度可以出現 很大的差異。

風是三維向量。地面風只是平面的方向和速度。

測風儀由風向標和風速表組成。風向標基本上是一個

不對稱形狀的物體,重心點固定於垂直軸上。當風吹過,對空氣流動產生較大阻力的一端便會順風轉動,顯示風向。風速表通常有三個風杯,固定於垂直軸上,令每個風杯的直徑面都是垂直。由於風杯凹面比凸面承受較大的風力,風杯輪便會隨風轉動,從風杯轉動的速度便可知道風速。

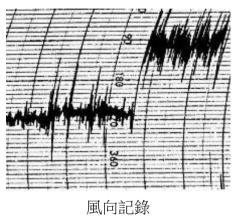
4.1 風的記錄

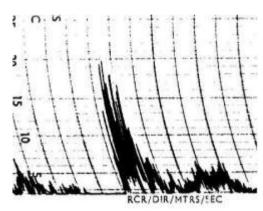
風的資料包括風向(ddd)、風速(ff)和陣風 (f_mf_m) 。

風向是風吹來的方向,並從地理上的北方開始順時針方向量度,通常以方位點(例如:北、東北、東、南、西)或角度(例如:080°,160°,230°,350°)表示。

天氣報告的風向(ddd)是觀測時段(10分鐘)的平均風向,經捨入最接近的 10 度,例如東風 =090°,南風=180°,西風=270°,北風=360°。

風速(ff)是觀測時段的平均風速。例行天氣報告(METAR)常用海里/小時 (knots),而地面天氣報告(SYNOP)常用的風速單位是米/秒 (m/s)。


陣風(f_mf_m)是比平均風速飆升 10 海里/小時(5 米/秒)或以上的瞬時風速。


如觀測時段的風向變化比較大 (60° 或以上),報告要加上風向變化 $d_n d_n d_n V d_X d_X d_X$ $_{4l}$ 。 $d_n d_n d_n \hbar d_X d_X d_X$ 就是風向變化的範圍。

測風儀的記錄器

風速記錄

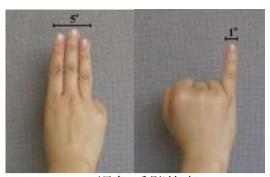
在編寫例行天氣報告時,我們把風向 (ddd)、 風速(ff) 和陣風 ($f_m f_m$) 併成 $dddff Gf_m f_m KT$ 一 組。

代碼	內容	單位/註釋		
ddd	風向	360°方位 (經捨入最接近的 10度)		
ff	風速	公里/小時、海里/小時 或 米/秒		
G	陣風記號	G表示有陣風		
$f_m f_m$	陣風	公里/小時、海里/小時 或 米/秒		
KT	風速單位	KT=海里/小時 (KMH=公里/小時、MPS=米/秒)		

例: 08011G23KT = 風向 080°, 風速 11 海里/小時, 陣風 23 海里/小時

4.2 估計風速

在儀器故障有或沒有儀器(如在郊野)的情況下,我們可以觀察周圍的事物狀況去估計風向和風速。


以下天文台常用的風力類別,須要時可參考。

風力類別 蒲福氏風力級數 <i>風速(單位:公里/小時)</i>		陸上情況	海上狀況
輕微 風力 1-2級 <i>風速 2 - 12</i>		人感覺有風,樹葉搖動。	小艇上的帆被吹起。海有玻璃狀不破碎的浪峰。
和緩 風力 3-4級 風速 13 - 30		塵土飛揚,樹的分枝搖 動。	海有中浪,並開始拖長, 白頭浪較頻密,間中有浪 花。
清勁 風力 5 級 <i>風速 31 - 40</i>		小樹開始擺動。	有中浪,並顯著拖長,多 白頭浪,間中有浪花。
強風 風力 6-7 級 風速 41 - 62		三強風信號表的風力。 大樹搖動,張傘而行有 阻力。	海浪堆疊,白沫吹成條 紋。
烈風 風力 8-9級 <i>風速 63 - 87</i>		八號烈風或暴風信號的 風力。小樹枝被吹折, 逆風而行舉步維艱。大 樹枝折斷,建築物輕微 損毀。	非常大浪,海浪更長,條 紋更覺顯著。
暴風 風力 10-11 級 <i>風速 88 - 117</i>		狂風怒吼。堅固的屋也 有損毀的危險,廣泛地 區受破壞。	有極巨浪,白沫遍佈海 面,波濤澎湃,視野明顯 受阻。
颶風 風力 12 級 <i>風速</i> >= 118		十號颶風信號的風力。 大樹可能被連根拔起, 大件的物件可能會被吹 上半空,破壞力極強。	有排山倒海之極巨浪,浪 花四射,視野嚴重受阻。

5. 能見度

能見度是指正常視力的人能夠看到和辨認出 適合目標的最大距離。適合目標是指深色而視 角在 0.5°-5°之間的物體。空氣中的懸浮粒子、 沙塵、霧、煙霞、降水和浪花都會影響能見度。

視角(手臂伸直)

5.1 觀測能見度的參考物件

能見度地圖:一張以觀測點為中心畫上同心圓的地圖,用來判斷距離。

全景攝影:一張以觀測點為中心註有四周建築物和山的距離及高度的全景攝影,可提供快捷便利的參考。

在夜間進行能見度觀測可找已知距離的燈光或山的輪廓作為目標。

由於能見度對飛機著陸影響很大,天文台在香港國際機場的跑道旁設置了前散射儀和透射表,以便量度各跑道的視程。

透射表

5.2 記錄能見度

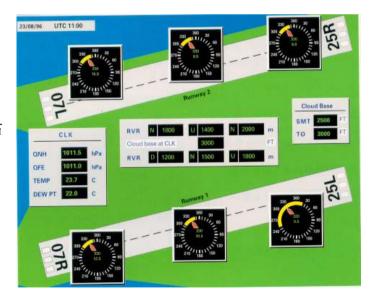
假如各方向的能見度有分別,我們要報告較差的數值。但局部地方因煙塵引致小角度的能 見度下降則不必報告,除非這些現象會影響飛機升降。

記錄能見度(VVVV)

代碼 内容		單位/註釋	
VVVV	能見度	米	

篇寫 VVVV 的例子

能見	度	370米	670米	3570米	5.7 千米	17 千米
編	碼	0350	0600	3500	5000	9999


若不同方向的能見度有顯著差異,有時需要利用兩組編碼 (VVVV $V_N V_N V_N V_N D_V$) 描述。例如 "4300 1400NE"表示普遍能見度為 4300 + ,但東北方向(NE)則低至 1400 + 。

5.3 跑道視程(RVR)

能見度對於飛機安全降落影響很大,所以在能見度低於 1500 米的情況下,我們需要在例行天氣報告另加一組跑道視程(RVR-Runway Visual Range),以便機長作出決定是否需要轉

往其他機場。

香港國際機場有兩條平行跑道,即北 跑道及南跑道,並分別以指標 RWY 07L/25R 及 RWY 07R/25L表示,如右 圖所示。

跑道視程(RVR)的格式是: RD_RD_R/V_RV_RV_RV_Ri

 $D_R D_R$: 跑道指標,常以方向表示。如機場只有一條跑道則可省略。設有平行跑道的機場就要再加上 $L \cdot C$ 或 R 以分辦左、中或右的跑道 (07L=在北跑道西南面降落,25R 在北跑道東北面降落)。

 $V_RV_RV_RV_R$: 跑道視程(單位:米)。

i: 趨勢 (U = 上升, D = 下降, N = 無變化)。

例: R07R/0600N = 07 右邊跑道, 跑道視程 600米, 而且沒有明顯轉變

6. 天氣狀况

6.1 現時天氣(w'w') 和近期天氣(REw'w')

現時天氣和近期天氣所函蓋的時段

現時天氣是指觀測時段(10分鐘)的天氣狀況。

近期天氣是指現時天氣前50分鐘的天氣狀況。

6.2 各種天氣

6.2.1 霧(FG) - 近地面的水氣因凝結而成微粒,浮游在空氣中,阻礙視線,使能見度下降至 1000 米或以下便是霧。有霧時,相對濕度高達 95 %以上。

6.2.2 薄霧(BR) -- 能見度在 1000 - 5000 米之間的霧。

6.2.3 煙霞(HZ) -- 懸浮在空氣中的極細乾性微粒阻礙視線,使 能見度下降至 5000 米或以下便是煙霞。煙霞的特性是比 較乾燥,相對濕度多在 80 %以下。

- 6.2.4 降水
- 6.2.4.1 毛毛雨(DZ) -- 水滴微細的雨。它似乎在空中飄浮或徐徐落下,迎面有潮濕感,落到水面時亦難以察覺。香港的毛毛雨通常來自冬末初春較低的層狀雲。由於雨滴繁多而散佈均勻,毛毛雨常使能見度降低。

6.2.4.2 雨(RA) -- 由深厚層狀雲產生的降水,比起毛毛雨,它的 雨滴較大和分散,落到水面時會引起波紋或水花,落到 乾地弄面時會出現濕斑。由於雨多來自層雲、雨層雲和 高積雲,下雨時天色較為陰暗和有持續性,強度變化不 大。本港下雨多在冬春兩季。

6.2.4.3 驟雨(SH) -- 由對流雲產生的降水,特性是驟始驟止。本 港下驟雨多在對流旺盛的夏季,但其他季節如有低壓槽 或冷鋒的情況下亦會下驟雨。

6.2.4.4 雪(SN) -- 白色不透明的六角形星狀、片狀或柱狀的結晶 固態降水。

6.2.4.5 雹(GR) -- 從深厚積兩雲下降的堅硬冰塊,通常與雷暴相伴。本港春末夏初偶有落雹的情況。

6.2.6 雷暴(TS) -- 由積雨雲所產生的地區性惡劣天氣,經常伴 有閃電及雷聲,並有強烈陣風及大雨,甚至落雹。如從 看見閃電至聽到雷聲所需的時間,以三秒作一千米計 算,我們可估計閃電區的距離。

6.3 記錄天氣狀況(w'w')

我們可以用 2 至 9 個下列包括強度、敘述和天氣狀況的字符來次記錄一個天氣狀況。每個 天氣報告最多可只包括 3 個天氣狀況。

	形	容					天氣現象		
	1. 強度		2. 形態		3. 降水		4. 視障		5. 其他
_	輕微	MI	淺薄	DZ	毛毛雨	BR	薄霧	SQ	狂風
	中 (不加形容)	BC	幾陣	RA	兩	FG	霧	FC	龍捲風 或水龍捲
+	大	SH	縣雨	SN	雪	FU	煙		, , , , , , , , , , , , , , , , , , ,
VC	附近	TS	雷暴	SG	米雪	HZ	煙霞		
		PR	部分	GR 5mn	雹(大≥ ì).	PY	飛沫		
				GS	雹(小< 5mm)				

例

+SHRA 大驟雨

+TSSHRAGR 雷暴大驟雨有大粒的雹

+VCFC 附近有水龍捲

-DZ FG 輕微毛毛雨和霧

TSSNGS 雷暴、下雪和小雹

MIFG 淺霧(地面至 2 米的能見度< 1000 m 2 米以上≥ 1000m)

BCFG 陣陣霧

TS FG 有霧和雷暴

7. 雲

雲是懸浮在天空的小水滴、冰晶或兩者的混合體。雲的形狀很多,變化複雜。根據雲的高 度、外形和結構,我們可以把它們分成三族十屬和更仔細的二十九類。

雲的觀測包括類別、雲量和顯著的雲層。

7.1 類別

- 7.1.1 **高雲族** -- 雲底在 20000 呎或以上的雲,包括卷雲、卷層雲和卷積雲。它們都 是由冰晶組成,透光性高,薄而透明,所以看起來有蠶絲般的光澤。
- 7.1.1.1 卷雲 (Ci) -- 呈纖維狀結構,通常是白色無暗影,有絲質的光澤。多呈絲條狀、羽毛狀、鉤狀、團狀和鐵砧狀。

7.1.1.2 卷層雲(Cs) -- 一片平均淺白色的雲,透個它仍可清晰 看到太陽和月亮的輪廓,地上物體的陰影明確,常有 日月暈出現。

7.1.1.3 卷積雲(Cc) -- 呈魚鱗狀淺白色的雲。雲塊通常小於 1° ,排列成行或成團。

- 7.1.2 **中雲族**-- 雲底在 6500 呎 至 25000 呎間,由水滴或水滴和冰晶混合一起組成的雲,包括高積雲和高層雲。
- 7.1.2.1 高積雲(Ac) -- 由灰白色的薄片或扁平球形雲塊組成的雲。常呈現魚鱗狀或扁瓦塊狀,排列成行或組成一團。雲塊視角通常在 1° 5°之間。高度常在 8000 15000 呎之間。

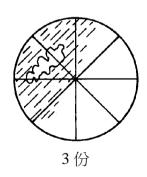
7.1.2.2 高層雲(As) -- 灰色或藍色一大片的雲。太陽和月亮的輪廓在較薄的高層雲後面仍隱約可見,就好像透過磨砂玻璃看一樣。它可能下連續性的雨,亦可能降低並加厚成雨層雲。通常在冷鋒或低壓槽臨近時出現。高度常在8000-12000 呎之間。

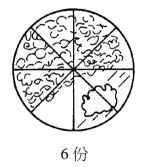
7.1.2.3 雨層雲(Ns) -- 一大片又厚又多水分的雲。呈暗灰色, 完全遮蔽太陽,無明顯的邊界。通常雲底散亂,常伴 有碎雨雲及下連續性的雨。香港天文台把雨層雲分類 為中雲族,但中國內地把它分為低雲族。

- 7.1.3 **低雲族**-- 雲底在 7000 呎或以下,包括積雲、積雨雲、層積雲和層雲。由於產 生各種低雲的天氣情況差異很大,所以它們的形狀亦有很大的分別。積雲和 積雨雲是在對流很強的不穩定氣層中產生,所以亦稱對流雲或直展雲。
- 7.1.3.1 積雲(Cu) -- 常在夏天出現雲頂呈圓拱形而底部平坦垂 直向上發展的雲。積雲的大小變化很大,由晴天的淡 積雲至下驟雨時龐大的塔狀積雲。初形成的積雲向上 發展,消散時則向平面擴散。積雲多是獨立一塊一塊

- 漂浮在空中的,雲與雲之間常可見到藍天,雲底多在 1000 3000 呎之間。積雲常伴有大驟雨。
- 7.1.3.2 積雨雲(Cb) -- 積雨雲是發展旺盛的積雲,遠看像一座 山。雲頂由冰晶組成,常出現絲質的組織及呈鐵砧狀。 雲底陰暗混亂,起伏不平,有時呈懸球狀。積雨雲常 伴有大雷雨、狂風,甚至雹,龍捲風或水龍捲。

7.1.3.3 層積雲(Sc) -- 垂直發展較小的的灰白色或灰色扁圓形雲塊,可以是一大片,排列成行,成群或獨立出現。較厚的層積雲會下雨。它們通常在較清涼的季節出現於本港的天空。雲底多在 1000 - 6000 呎之間。




7.1.3.4 層雲(St) -- 一片平均白色或灰白色無形狀,看似霧的雲 (霧就是在地面的雲)。層雲可以下毛毛雨。本港的層雲多在春天出現,雲底多在 2000 呎以下,甚至低至200-300 呎。

7.2 雲量

雲量是以估計天空被雲遮蔽之總面積來評定。把天空分為八份,1份即是八分之一的天空被雲遮蔽,2份即是八分之二的天空被雲遮蔽,如此類推。0份 = 天朗氣清,1-2份 = 稀 薄雲層,3-4份 = 零散雲層,5-7份 = 疏鬆雲層,8份 = 天色陰暗。

7.3 顯著雲層 (N_SN_SN_Sh_Sh_Sh_S(CC))

觀測雲層的時候,我們要分辨出每層雲的份量,雲底高度和類別。假如滿天都是高低不同的雲層,我們可以按高度從低至高,從少至多把最顯著的雲層挑選出來報告。若須報告的層雲類別是積雨雲或塔狀積雲,我們更要加上它們的類別(CB或 TCU),以提醒飛行人員加倍小心。

7.3.1 雲量(N_SN_SN_S)

雲量	縮寫
無雲	SKC (Sky Clear)
微量至 2/8	FEW (Few)
3/8 至 4/8	SCT (Scattered)
5/8 至 7/8 或以上,但不足 8/8	BKN (Broken)
8/8	OVC (Overcast)
不能看清楚 (被霧包圍)	OBS (Obscure)

7.3.2 雲底高度(hshshs)

報告雲底高度以100呎為單位。

例如 008 代表 800 呎、090 代表 9000 呎、250 代表 25000 呎。

觀測雲層的高度最方便快捷的方法就是目力測計。要知道低雲高度,我們可以利 用周圍的建築物和山的高度作比較。中雲的雲塊較小,多是灰白色至灰色,雲底 較深暗。高雲的雲塊最小,顏色多是光亮白色,光暗分別不大。

我們亦可利用測雲燈和雷射雲冪儀來幫助測計雲底高度。

測雲燈

雷射雲冪儀

照準儀 Alidade 暗雲燈 Searchlight

照準儀的原理

照準儀

7.3.3 雲的報告層數

我們通常只跟下表規定報告三至四層顯著的雲。

第一層	最低一層,任何雲量(FEW, SCT, BKN 或 OVC); 微量亦當 FEW 報告		
第二層	較高的一層,雲量 3/8 或以上(SCT, BKN 或 OVC);		
第三層	再高的一層,雲量 5/8 或以上(BKN 或 OVC);		
附加層	獨立於以上三層的強對流雲 積雨雲(CB)或 塔狀積雲(TCU)		

報告應注意下列各點:

- 跟高度從低至高報起
- 同等高度(在300 呎以內)的雲可以併作一層報告
- 除積兩雲(CB)或塔狀積雲(TCU)外,其他雲屬不須報告
- 通常只報告三層,除非有獨立強對流雲 -- 積雨雲(CB)或塔狀積雲(TCU)

如果在天氣觀測時

- 能見度是在10公里或以上
- 無5000呎以下的雲
- 無降水、雷暴和淺霧等天氣

我們可以用 CAVOK(Ceiling And Visibility OK)去代表能見度和顯著雲層。在 5000 呎以上若 有雲,只須寫在備註欄內。

如雲層在 5000 呎以上而其他狀况未乎合 CAVOK 規定(例如能見度是在 10 公里以下或有 淺霧),我們可以用 NSC(No Significant Cloud)代表顯著雲層。

香港常	開	埀	们	高	度
	ノレ	12	HJ		<i>/</i> ×

雲族	雲屬	本港常見的高度範圍(呎)
	卷雲 Ci	
旧	卷層雲 Cs	30000 - 40000
	卷積雲 Cc	
	高積雲 Ac	10000 - 15000
中	高層雲 As	8000 - 12000
	雨層雲 Ns	2000 - 8000
	層積雲 Sc	3000 - 6000
低	層雲 St	0 - 2000
	積雲 Cu	1000 - 3000
	積雨雲 Cb	1000 - 3000

8. 雨量

香港天文台總部的工作人員每小時用一套 203 毫米普通雨量器來量度雨量。普通雨量器旁安裝了虹吸式雨量器,工作人員可憑兩者的記錄互相核對。

降雨的速度對山泥傾瀉或渠務工作影響 很大,所以我們亦安裝了一套查迪型 (Jardi's)降雨率測量器來記錄瞬時降雨 率。

天文台裝置了一套遍佈各區的翻斗式雨量器網絡,並與土力工程處合作開發了一個雨量數據收集系統。這些系統每5分鐘把全港各區的雨量資料傳送到預測總部,對發出暴雨及山泥傾瀉警告的工作有很大幫助。我們亦設置了降雨探測器,使我們即使在室內工作亦立刻知道外面下雨的情況。

降雨探測器

虹吸式雨量器

查迪型降雨率測量器

翻斗式雨量器

9. 氣壓

量度氣壓的單位是百帕斯卡 hPa(與毫巴 mb 相同)。國際民用航空組織的標準大氣平均海面壓是 1013.25 hPa。本港夏天(七月)的平均是 1005.4 hPa,冬天(一月) 是 1020.1 hPa。

量度氣壓最常用的儀器是水銀氣壓表和空盒氣壓表,自動氣象站則使用數字氣壓表。

水銀氣壓表

空盒氣壓表

數字氣壓表

10. 高空觀測

京士柏氣象站每天在 00 及 12 UTC 用無線電探空儀進行高空氣象觀測,量度本港上空的 溫度、濕度、氣壓、風向和風力;在06 UTC 及18 UTC 用氣流剖析儀監測,量度上空的 風向和風力。所得資料即時傳回預測總部、機場氣象所及傳送到世界的氣象局。

此外,天文台亦有定時進行高空臭氧測量及在有需要時進行輻射測量。

七十年代天文台採用雷達探空系統,進行一次高空氣象觀測要動員3人,分別負責操控雷 達,讀取數據和計算、繪圖、編碼等工作。八十年代使用的「數碼科拉系統」只需一人操 作,而自2004年運作的「自動高空氣象觀測系統」更不需要人員在場操作。

自動高空氣象觀測系統

無線電探空儀

天氣報告

日期:	:/ 20	時間	: UTC
-----	-------	----	-------

氣象元素		觀測記錄	編碼
風	$(dddffGf_mf_mKT)$		
能見度	(km/m)		
天氣狀况	(w'w')		
第一層	雲量		
	雲底高度	呎	
第二層	雲量		
	雲底高度	呎	
第三層	芸量		
	雲底高度	呎	
附加層	雲量		
	雲底高度	呎	
乾球/露點	T'T'/T' _d T' _d	/ °C	/
氣壓		hPa	Q
近期天氣	REw'w'		
備註			
簽名			

備註:

 天色晴朗 (b): 0 - 2 份
 天氣良好 (bc): 3 - 5 份

 天陰 (o): 8 份
 DZ
 毛毛雨

 GR
 雹(大≥ 5mm).
 GS
 雹(小< 5mm)</th>

 FG
 霧
 FU
 煙

 PY
 飛沫
 SQ
 狂風

天氣狀況 多雲 (c):6-7 份 RA 雨 BR 薄霧 HZ 煙霞

FC 龍捲風

SCT : 3 - 4 份 OBS : 朦朧天 雲量 FEW:微量-2份 BKN:5-7份 OVC:8份