
 

 

Reprint 901     

  

  

  

 Lagrangian Coherent Structures in Finite Domains  

 

 

 W. Tang1, P.W. Chan & G. Haller2 

 

 

The 16th US National Congress of Theoretical  

and Applied Mechanics, June 27-July 2, 2010,  

State College, Pennsylvania, USA 

 
 
 

1 
Arizona State University, Tempe, AZ, USA 

2 
M

c
Gill University, Montreal, Quebec, Canada 



16th US National Congress of Theoretical and Applied Mechanics

June 27-July 2, 2010, State College, Pennsylvania, USA

USNCTAM2010-406

LAGRANGIAN COHERENT STRUCTURES IN FINITE DOMAINS

Wenbo Tang
Arizona State University

Tempe, AZ, USA
wenbo.tang@asu.edu

Pak Wai Chan
Hong Kong Observatory

Hong Kong, China

George Haller
McGill University

Montreal, Quebec, Canada

ABSTRACT
We develop a finite-domain finite-time Lyapunov expo-

nent (FDFTLE) method to allow Lagrangian Coherent Structure
(LCS) extraction from velocity data within limited domains. This
removes spurious ridges as seen when trajectories are stopped at
the domain boundaries. We find this extension useful in prac-
tical applications when LCS are extracted from LIDAR mea-
surements at Hong Kong International Airport and used to de-
termine airflow patterns around the airport. In addition to the
FDFTLE method, we have developed a suite of mathematical
tools to quantify different types of air motion near the LCS. This
allows us to objectively describe the relative motion near LCS.

INTRODUCTION
The use of Lagrangian Coherent Structures (LCS) in the ob-

jective, frame-independent identification of transport and mixing
structures in nonlinear fluid flows has been a popular trend in
recent years [2, 4, 5, 7]. In the computation of the mathemat-
ical criteria that signifies LCS, initial conditions are integrated
over time using a given velocity field to obtain the Lagrangian
trajectory. Certain dynamical properties are evaluated along the
trajectories to reveal Lagrangian coherence. For example, the
finite-time Lyapunov exponent indicates the amount of stretch-
ing of nearby trajectories over a finite time considered [3]. In real
applications, as a rule rather than exception, velocity fields are
specified on open domains. This poses significant challenge in
the computation of LCS when fluid trajectories meet the bound-
aries and leave the domain, since stopping the trajectories will
artificially make the boundaries attractors and repellers, a false
structure that is undesired.

One way to mitigate the problem is artificially extending the
data to a linear external velocity field. The external velocity is
obtained by least square approximation of the given data in L2

norm while maintaining incompressibility. Velocity data and ex-
trapolation are then connected by a filter function that smoothly

FIGURE 1. Application of the FDFTLE method for an idealized flow
field.

connects the interior and exterior of the domain [6]. By this ex-
tension, trajectories meeting the domain boundaries can continue
to separate at the rate that follows a global, large-scale flow, a
most probable fate of a fluid trajectory. Artificial structures are
eliminated since nearby trajectories all move in a smooth velocity
field. We show one example of the application of the FDFTLE
method to a flow of known dynamical boundaries in Fig. 1. The
flow field is given by u = x− y2;v = −y + x2. This autonomous
system has one fixed point at the origin, with one branch of sta-
ble manifold, one branch of unstable manifold and a homoclinic
orbit passing the fixed point. Using velocity data from unlimited
range we accurately extract the dynamical boundaries precisely
(cf. Fig. 1b). To compare the FDFTLE with a traditional method,
we artificially limit the domain and stop trajectories at the bound-
aries (Fig. 1c) and apply the FDFTLE method (Fig. 1d). Clearly,
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FIGURE 2. Different Lagrangian measures helping the differentiation
of flow structures.

there is an artificial ridge in Fig. 1c which is removed in Fig. 1d.
In the particular problem of interest described in [6], which

is also the focus of this talk, we are interested in the accurate ex-
traction of LCS in a small observational domain covered by the
range limit of the LIght Detection And Ranging equipment (LI-
DAR) situated at the Hong Kong International Airport. Because
of the limiting range, LIDAR would provide a nowcast of flow
features that an airplane would experience during the first or last
minute of its flight. Using the traditional method of stopping tra-
jectories at the domain boundaries significantly limits the regions
of trustworthy structures that can be used by the pilot. As such,
the application of the FDFTLE method is desirable in detecting
the nonlinearity of the near ground flow.

It is not only the LCS, or the FDFTLE field that is of our
interest. Air motion near the FDFTLE can be stretched in sev-
eral ways: transversal stretching to a ridge line of FDFTLE
(hyperbolic, repelling structures), or sliding along a ridge line
(parabolic, shear structures). In reality both types of dynamics
exist around a LCS. We use a set of measures based on Fenichel
numbers [1] to differentiate the LCS and thus are able to tell if
the type of air motion we see is dangerous to airplane approaches.
The measures can be understood through Fig. 2. Fig. 2a-c indi-
cate the several possible motions that a FTLE ridge can indicate,
whereas Fig. 2d indicates how the normal and tangent vectors to
the FTLE ridge are used to form different Lagrangian measures.

Finally, in this talk, we use LIDAR measured data to recon-
struct a 2D flow field and detect coherent structures in this recon-
struction. The extracted LCS is compared to flight data to under-
stand their correlation and help develop algorithms that would
generate warnings for airplanes leaving/approaching the HKIA.

MATHEMATICS
We briefly outline the various mathematical equations here.

The linear extension technique and the filter function are outlined
in [6]. To obtain the FDFTLE field, we compute the flow map
x(t;x0; t0) from the reconstructed velocity

ẋ = u, (1)

and the FDFTLE is computed as

σ(t; t0,x0) =
1

2|t− t0| ln
([

∂x(t; t0,x0)
∂x0

]T
∂x(t; t0,x0)

∂x0

)
(2)

An integrated measure of the vertical motion of the airflow
is given as

DIV t
t0(x0) =

1
|t− t0|

∫ t

t0

[
∂u(x)

∂x
+

∂v(x)
∂y

]
dt ,

ST R⊥ =
1

|t− t0| ln
(
[nt ]T ·∇F t

t0 ·nt0
)
,

ST R‖ =
1

|t− t0| ln
(
[tt ]T ·∇F t

t0 · tt0
)
,

SHR =
1

|t− t0| ln
(
[tt ]T ·∇F t

t0 ·nt0
)

(3)

where DIV is the Lagrangian integral of the horizontal diver-
gence along a trajectory, and the horizontal measures indicate
Lagrangian versions of normal, tangential stretching and along
structure shear.
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