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Abstract— Wind shear, which refers to sudden and 
sustained changes in the wind direction and speed, could be 
hazardous to aviation.  Windshear is rather difficult to predict 
due to its transient and sporadic nature. Moreover, the causes of 
wind shear may be different at different airports. In some places 
it is caused by microbursts, while in other places wind shear 
may result from meso-scale weather phenomena and terrain 
effect. Thus, algorithms and techniques used to predict wind 
shear caused by microbursts, as in [1], may not be applicable at 
another airport where wind shear and turbulence arise from 
other meteorological conditions. This paper focuses on the use of 
chaotic oscillatory-based neural networks (CONN) for 
predicting wind shear arising from meso-scale weather 
phenomenon at the Hong Kong International Airport. Using 
historical weather data from the Hong Kong Observatory, 
simulations show that CONN is able to forecast wind shear with 
a reasonable level of accuracy for a sea breeze event. 

I. INTRODUCTION 

The term “wind shear” refers to a change in the wind direction 
and speed that typically lasts 3 to 40 seconds and results in a 
sustained change in the headwind experienced by aircraft. A 
decrease in headwind will result in decreased lift and this in 
turn may mean that an aircraft deviates from its planned flight 
path [2].  

While wind shear may be hazardous to the aircraft, it is also 
a complex and hard-to-predict phenomenon. One particular 
difficulty is that the causes of wind shear may be different in 
different locations. In some places wind shear is caused by 
microbursts, which are localized columns of sinking air, 
while in other places wind shear may result from other 
meso-scale weather phenomena associated with seasonal 
prevailing winds and local topographies. Thus, algorithms 
and techniques used to predict wind shear caused by 
microbursts, as in [1], may not be applicable at other airports 
such as Hong Kong International Airport (or HKIA), where 
the main causes of wind shear and turbulence are strong 
winds blowing across the local hills [3, 4], the winds 
associated with tropical cyclones, and sea breeze [2]. Wind 
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shear is not uncommon at HKIA, where it is experienced by 
about one in 500 arriving and departing flights with many 
occurrences being in non-rainy and clear-air conditions [2]. 

A further difficulty in the prediction of wind shear is that it 
is difficult to model, not least because it arises over very short 
time periods. Artificial Neural Networks (ANNs) have been 
applied with some success to other wind prediction problems. 
Bilgili, Sahin and Yasar [5] used hourly mean wind speeds 
and ANNs to predict mean monthly wind speeds. More and 
Deo [6] used ANNs and wind forecasts to predict the power 
output of wind turbines. Oztopal [7] used ANNs in predicting 
the wind potential of various regions. Barbounis et al. [8] 
used ANNs to forecast long-term wind speeds and their 
potential for use in generating wind power. In all of these 
cases, however, the predictions were only of mean hourly or 
monthly wind velocities covering relatively large regions, 
making them inapplicable to the very short time frame and 
localized area of the occurrence of wind shear in the airport 
region. 

One way to deal with the short-term nature of wind shear 
prediction is to apply chaotic neural networks [9], [10] which 
model the non-linear behavior of neurons, activating a neuron 
with a non-linear output function, thereby providing far much 
more complex behavior than the simple threshold functions 
used in conventional ANNs. Inclusion of chaotic behavior in 
ANNs offers the possibility of weather forecasting [11]. 
Neural network architectures and learning algorithms 
involving chaos have been used for the storage in memory of 
analog patterns [12]. While it is hard to apply chaos theory to 
long-term prediction, it seems that, owing to its ability to 
focus on the simple deterministic relationship for what would 
appear to be random-looking data, it may be well-suited to 
short-term prediction, especially when a good physical model 
is lacking [13].  

In this paper, we propose a meso-scale wind shear 
prediction model that uses chaotic oscillatory-based neural 
networks (CONN) to forecast the evolution of winds along 
the glide path of the airport.  The model makes use of accurate 
Doppler velocities measured using LIDAR (Light Detection 
And Ranging) data collected by the Hong Kong Observatory 
at HKIA. LIDAR is an optical analogue of RADAR (RAdio 
Detection and Ranging). It uses a ground-based pulsed laser 
beam to measure the velocity of aerosols in the air. LIDAR 
has previously been used to detect occurrences of wind shear, 
with high accuracy [14], but there has been little research into 
using it to forecast wind shear. The proposed model is tested 
in simulations and its predictions were compared with 
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historical LIDAR data.  The model is demonstrated to have 
the potential of forecasting the time, location and size of wind 
shear events with considerable accuracy.   

The remainder of this paper is organized as follows. 
Section II describes chaotic oscillators, which form the basis 
of our chaotic oscillatory-based neural networks (CONN) 
approach. Section III presents our methodology for applying 
CONN on wind shear forecasting. Section IV presents our 
simulation and its results. Section V presents our conclusion 
and an outline of future work. 

II.  THE CHAOTIC OSCILLATOR 

Wilson and Cowan [15] proposed the neural oscillatory 
model, which describes the behavior of neurons as interactive 
triggering between excitatory and inhibitory neurons. This 
theory has also formed the basis of many subsequent studies 
and models in cognitive information processing [16] and on 
the synchronization and desynchronization behavior of neural 
oscillators. Recent applications include pattern and memory 
association, scene analysis, and pattern recognition [10]. 
Chaotic oscillators have been combined with ANNs to 
produce Chaotic Oscillatory-based Neural Networks 
(CONN), which mimic neural behaviors in the human brain. 
One of these models is the Improved Lee Oscillator 
(Retrograde Signaling) model [9] which combines the 
original Lee Oscillator [17] with the retrograde transport 
mechanism in axons, known as axonal transport or 
axoplasmic flow [18]. Figure 1 is a graphic depiction of the 
Lee-oscillator (Retrograde Signaling) model. 

 

 

Fig 1. Lee Oscillator (Retrograde Signaling) Model [9] 

 
As a Lee Oscillator (Retrograde Signaling) model exhibits 

chaotic progressive growth in its neural dynamics, it can be 
used as an effective chaotic bifurcation transfer unit in neural 
networks. 

 The Lee Oscillator (Retrograde Signaling) model consists 

of the neural dynamics of four constitutive neural elements: u, 
v, w and z. The neural dynamics of each of these constituent 
neurons are given by 

 
 

(1) 

 
  

 

(2) 

 (3) 

 (4) 

 
where u(t), v(t), w(t) and z(t) are the state variables of 
respectively the excitatory, inhibitory, input and output 
neurons; f( ) is the hyperbolic tangent function; a1, a2, a3, a4, 
b1, b2, b3 and b4, are the weight parameters for these 
constitutive neurons; θu and θv are the thresholds for 
excitatory and inhibitory neurons; I(t) is the external input 
stimulus; and k is the decay constant.  

III.  METHODOLOGY 

A. Data Preparation 
The local air density, local temperature variations, local 

effects of cloud and rain are difficult to measure [19] and 
LIDAR can only measure the Doppler velocities of the wind.  
We make use of the Doppler velocity data derived from glide 
path scans of the LIDAR. The Doppler velocities data are first 
processed with the quality control algorithm [20]. Outliers are 
detected by comparing each piece of radial velocity with 
neighboring data points. If the difference between them is 
larger than a pre-defined threshold, it will be smoothed using 
a median-filtered value. The threshold is determined from the 
frequency distribution of the difference in the velocities of the 
adjacent range/azimuthal gates of the LIDAR over a long 
period of time. Data quality control is kept to a minimum in 
order to avoid smoothing out the genuine wind fluctuations of 
the atmosphere [20]. If data is missing for a particular 
location, any available valid velocity data from neighboring 
positions or timeframes is used to derive a replacement 
velocity value through a linear interpolation of the velocities 
at the neighboring points. 

The training and testing data set were normalized by using 
minimum (-1) and maximum (+1) normalization before 
training and testing. Each set of training data was for the glide 
path at a specific time. It included the Doppler velocities on a 
slant range, angle of elevation, and azimuth. These were used 
to train the model to predict Doppler velocities along the glide 
path in the upcoming three minutes. The time interval 
between two training sets was from three to four minutes. 
 



 
 

 

B. Chaotic Oscillatory Based Neural 

Network 
The Chaotic Oscillatory Based Neural Network (CONN) is 

made up of a Multi-Layered Perception (MLP) Neural 
Network and a Lee Oscillator (Retrograde Signaling) Model 
with various parameter settings. The MLP neural networks 
constructed by one or two hidden layers with several neurons, 
and the activation function of the neurons in the hidden 
layer(s) and output layer were replaced with the Lee 
Oscillator (Retrograde Signaling) Model rather than with the 
sigmoid or hyper tangent function as in conventional neural 
networks. 
 

C. Training and testing of the CONN 
The CONN is trained with a month of the preprocessed 

Doppler velocity data, which is formatted into time intervals 
using a back propagation learning algorithm. A momentum 
term is used to speed up convergence and avoid local minima. 
It learns from the root mean square error between the 
predicted result and the measured value from the LIDAR 
through back propagation. In the testing process, the neural 
network uses the experience gained in the training process to 
generate the forecast for the next time interval(s). 

 
Fig 2. The structure of the CONN 

 
Figure 2 shows the structure of the CONN used in the 

simulation. The current wind pattern along the selected glide 
path (Vin) which is measured by the LIDAR system will be 
fed into the CONN through the input nodes in the input layer. 
The forecast of the winds along the selected glide path (Vout) 
in the next time frame can be obtained at the output node in 
the output layer. Neurons in hidden layer(s) and output layer 
produce the output of the chaotic oscillator based on the 
corresponding external stimulus received from the connected 
neurons in the previous layer.  

There can be one to two hidden layer(s) with several hidden 
neurons within. The number of hidden layers and hidden 
neurons were chosen experimentally since there is no simple 
clear-cut method for determining these parameters [9]. 
Characters A and B in the neurons indicate different 
parameter settings used with the Lee Oscillator (Retrograde 
Signaling) Model. These parameters were also chosen 
experimentally. Table 1 presents the values of the parameter 
settings that are used in the neurons, which are labeled A and 
B in the hidden layer(s) and output layer in Figure 2. 

 
Lee Oscillator (Retrograde Signaling) 

with Parameter sets Parameters 
A B 

a1 1.0 -0.7 
a2 -1.0 0.6 
a3 1.0 -0.5 
a4 -1.0 0.4 
b1 1.0 -0.7 
b2 -1.0 0.6 
b3 1.0 -0.5 
b4 -1.0 0.4 
k 50.0 50.0 
θu 0.0 0.0 
θv 0.0 0.0  

 
Table 1. Values of the parameter used in the CONN 

 
 

 
Fig 3. Bifurcation Diagram of Lee Oscillator (Retrograde 
Signaling) Model for Parameter set A 
 
 



 
 

 

 
Fig 4. Bifurcation Diagram of Lee Oscillator (Retrograde 
Signaling) Model for Parameter set B 

 
Figures 3 and 4 show the bifurcation diagrams of the Lee 

Oscillator (Retrograde Signaling) Model with parameter sets 
A and B. The x-axis represents the external stimulus (I) from 
the connected neurons in the previous layer to the chaotic 
oscillator. The y-axis represents the output of the chaotic 
oscillator corresponding to the external stimulus. The 
response of the Lee Oscillator (Retrograde Signaling) Model 
to an external input stimulus with parameter sets A and B can 
be categorized into two regions, the sigmoid-shape region and 
hysteresis region. The former denotes the non-chaotic neural 
activities in the oscillator. The latter denotes the chaotic 
behavior that results when a weak external input stimulus is 
received. 

In [10], the parameters which used in individual neurons 
are predefined before the start of training process and the 
training process only focuses on tuning the weights among 
different layers of neurons. As the shape of the bifurcation is 
predefined, the responses of the Lee Oscillator (Retrograde 
Signaling) Model were limited to the outer most shell of the 
chaotic region. 

Neural oscillators depend on parameters that have to be 
tuned to achieve the desired performance. However, since 
neural oscillators have highly nonlinear dynamics, 
parameters of neural oscillators are difficult to tune [21], [22]. 
Although there has been work on chaos control and tuning the 
parameters of neural oscillator, most of it concentrates on 
oscillation control or the frequency, amplitude and phase of 
the neural oscillator [21], [22], [23], and [24]. Little work has 
considered the shape of the bifurcation diagram used as the 
transfer function in CONN. 

Experimental variation in the number of iterations of the 
same parameters set during the training process allows 
CONN to produce possible changes in the chaotic region of 
the Lee Oscillator (Retrograde Signaling) Model. Figures 5 
and 6 show the appearance of the Lee Oscillator (Retrograde 
Signaling) Model for parameter set A at iterations 4 and 10. 

The training process not only tunes the bias of neurons and 
the weights between input layer, hidden layer and output 
layer, it also adjusts the number of iterations of the Lee 

Oscillator (Retrograde Signaling) Model in the output layer 
neurons. As the time required computing the Lee Oscillator 
(Retrograde Signaling) Model is directly proportional to the 
number of iterations that are assigned, it is also possible to 
improve the performance of the CONN, reducing the time 
required for less necessary iterations by adjusting the number 
of iterations used in each individual neuron during the 
training process.  

The mechanism is that a randomly generated iteration 
number (N) will be assigned to each neuron in both hidden 
and output layers during initialization of the neural network. 
Neurons in the output layer will produce five different outputs 
by using the assigned N value. For example, if value 10 is 
assigned to the first neuron in the hidden layer during 
initialization, this neuron will produce five outputs by using 
N±2 (in this example N=8, N=9, N=10, N=11 and N=12 will 
be used) with the same parameter set in the current epoch of 
training. After comparing the outputs with the actual 
measured data from LIDAR, the output with the smallest 
error value will be selected as the output of that neuron. On 
the other hand, the N that produces the output with the 
smallest error will be used to update the old N of that neuron 
in that training epoch and will be the initial N value of that 
neuron in the next epoch. Once the changes of the N value in 
an individual neuron become steady, the mechanism that 
updated the N value in that neuron will stop. We assume that 
the neural oscillator used in that neuron is already well 
trained. 

By varying the N value, different possible changes in the 
chaotic region of the chaotic oscillator will be tested and 
selected heuristically in the training process. The use of the 
chaotic oscillator will no longer be limited to the outermost 
shell of the chaotic region produced by a fixed number of 
iterations assigned at the initialization of CONN. 

 
 

 
Fig 5. Lee Oscillator (Retrograde Signaling) Model for 
Parameter set A with iterations number 4 
 



 
 

 

 
Fig 6. Lee Oscillator (Retrograde Signaling) Model for 
Parameter set A with iterations number 10 
 

D. Wind shear detection in the 

forecast result 
An algorithm called the GLide-path scan Wind shear alerts 

Generation Algorithm (GLYGA) has been developed by the 
Hong Kong Observatory to detect wind shear automatically 
from headwind profiles generated from LIDAR data [20]. By 
combining GLYGA and the forecasted results that produced 
by CONN, it may be possible to forecast wind shear events. 
We do this by first combining the forecast radial velocities 
along a glide path to construct a headwind profile. 
Differences in the velocities of adjacent data points in the 
headwind profile are calculated to construct a velocity 
increment profile.  Next, the wind shear ramps are detected by 
comparing each data point of the profile with the neighboring 
points on two sides. The wind shear ramps detected from a 
headwind profile are prioritized using a normalized wind 
shear value ∆V/H1/3, suggested by Jones and Haynes [25], 
where ∆V is the total change in the headwind and H is the 
ramp length. If any one of the wind shear ramps exceeds 14 
knots, an alert message is generated.  

IV.  SIMULATION  

We tested the wind shear alert generation function using 
sea breeze data from 6 January 2009. This date was chosen 
because it was a day of significant wind shear with large wind 
shear ramps. A training set was constructed from the data 
recorded between 1 December 2008, 02:42:46 (UTC) and 1 
January 2009, 06:03:57 (UTC) and a testing set was 
constructed from the data recorded between 6 January 2009, 
04:03:09 (UTC) and 04:54:58 (UTC).  

Figure 7 shows the overall changes of the wind along the 
glide path 07RA (i.e. landing at the south runway of HKIA 
from the west) between 6 January 2009 04:05 (UTC) and 
04:56 (UTC). Figure 8 shows the forecast of the wind profile 
along the glide path 07RA made using the current CONN 
model. The x-axis shows the distance from the end of the 
runway in nautical miles and the y-axis shows the wind 
velocity in meters per second. The various gray lines indicate 

the wind field along the glide path at different moments. 
Figure 9 provides a scatter diagram comparing the observed 
and the forecast headwinds between 6 January 2009 04:05 
(UTC) and 04:56 (UTC). The forecasts can be seen to be 
fairly close to the actual observations. 

Figure 10 shows headwind profiles obtained by applying 
the GLYGA algorithm with the actual observed LIDAR data 
and simulation results for the sea breeze for the period from 6 
January 2009 at the arriving runway corridors 07RA with 
different time slots. The small figures on the left are the 
forecasts made by CONN. The small figures on the right are 
the actual observations from LIDAR. The x-axis is the 
distance away from the end of the runway in nautical miles. 
The y-axis on the left is for the head wind measured in knots. 
The y-axis on right hand side is the altitude of the glide path 
measured in feet. The detected wind shear ramp(s) are 
highlighted.  

 
 

 

Fig 7. The observed movement of the sea breeze between 6 
January 2009 04:05 and 04:56 (UTC) 
 
 

Fig 8. The forecasted radial wind velocity by CONN between 
6 January 2009 04:05 and 04:56 (UTC) 
 



 
 

 

 

Fig 9. Forecasted versus observed headwinds  
 
 
In this simulation, the forecast predicted most of the 

actually observed wind shear. In the period between 04:05 
(UTC) and 04:56 (UTC) wind shear was successfully forecast 
for seven out of eight occurrences in 14 time slots. For 
example, one 14-knot wind shear ramp was observed between 
0.3 and 1.4 NM from the end of the runway at 04:17:06 
(UTC). The GLYGA algorithm captured a 15-knot wind 
shear ramp between 0.5 and 1.5 NM from the end of the 
runway at 04:17:06 (UTC). We note that the highlighted 
region in the forecast figures (as a predicted wind shear ramp) 
corresponds to the region where wind shear in fact occurred 
in the observed headwind profiles and they had similar size. 
In short, the CONN model appears to make reasonable 
predictions of the occurrence of the wind shear events, 
including the general location and magnitude of the shear.  

It is fair to say that the performance of forecast drops while 
time is passing. Figure 11 shows the change of correlation 
coefficient of the forecast and actually measured data against 
time for a long trial. There is a sudden drop at around 180 
minutes and some later fluctuation of the correlation 
coefficients. This sudden drop of correlation coefficient 
indicates the trained CONN begins to lose the skill on making 
valid forecast. In order to keep making valid forecast, 
re-training of the CONN with the last updated data will be 
required.  

 

Fig 11. Correlation coefficient versus time 

V. CONCLUSION 

Using the LIDAR’s Doppler velocity data for a meso-scale 
wind field, we tested CONN, a chaotic oscillatory-based 
neural network, for wind shear forecasting. Experimental 
results show that it appears to have the potential of capturing 
the occurrence and evolution of sudden changes in the wind 
along the glide paths caused by sea breeze in the vicinity of 
the Hong Kong International Airport. The simulation results 
show that Doppler velocity forecast using CONN can be 
transformed into headwind profile and processed with the 
wind shear alerting algorithm, GLYGA, that was developed 
by the Hong Kong Observatory.  The alerts based on the 
CONN forecast are shown to match actual observations made 
using LIDAR in terms of time, location, and magnitude of the 
shear for a particular case of sea breeze. 

In future work we will continue to focus on the winds along 
the glide paths and try to optimize the computational process 
and enhance the predictive capability of the CONN model by 
improving the learning algorithm and exploring new learning 
algorithms for both CONN and the Lee Oscillator. We will 
also investigate ways to automatically tune the initial 
parameter settings of the CONN and identify the most 
suitable parameter settings of the Lee Oscillator for 
forecasting different types of wind fluctuations. Furthermore, 
we will try to improve the quality of the forecasts and the alert 
generating results. We will do this by comparing alert 
messages generated from actual LIDAR data, forecasts by 
CONN, and actual wind shear experienced by aircraft as 
reported by pilots. 
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Fig. 10. The headwind profiles that obtained by applying GLYGA algorithm with the forecast(A) and the actual measured LIDAR(B) data 
 


