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Abstract— Wind shear, which refers to sudden and
sustained changes in the wind direction and speed, could be
hazardous to aviation. Windshear is rather difficult to predict
duetoitstransient and sporadic nature. M or eover, the causes of
wind shear may be different at different airports. In someplaces
it is caused by microbursts, while in other places wind shear
may result from meso-scale weather phenomena and terrain
effect. Thus, algorithms and techniques used to predict wind
shear caused by microbursts, asin [1], may not be applicable at
another airport where wind shear and turbulence arise from
other meteorological conditions. Thispaper focuseson the use of
chaotic oscillatory-based neural networks (CONN) for
predicting wind shear arising from meso-scale weather
phenomenon at the Hong Kong International Airport. Using
historical weather data from the Hong Kong Observatory,
simulations show that CONN isableto forecast wind shear with
areasonablelevel of accuracy for a sea breeze event.

I. INTRODUCTION

The term “wind shear” refers to a change in thedwdirection
and speed that typically lasts 3 to 40 secondgesults in a
sustained change in the headwind experienced braétirA
decrease in headwind will result in decreasedliftl this in
turn may mean that an aircraft deviates from ismpéd flight
path [2].

While wind shear may be hazardous to the airdtagtalso
a complex and hard-to-predict phenomenon. Oneqodati
difficulty is that the causes of wind shear maydiféerent in
different locations. In some places wind shearaigsed by
microbursts, which are localized columns of sinkiaig,
while in other places wind shear may result frorheot

shear is not uncommon at HKIA, where it is experashby
about one in 500 arriving and departing flightshwihany
occurrences being in non-rainy and clear-air ciorakt[2].

A further difficulty in the prediction of wind shess that it
is difficult to model, not least because it arieesr very short
time periods. Artificial Neural Networks (ANNs) habeen
applied with some success to other wind predigtiablems.
Bilgili, Sahin and Yasar [5] used hourly mean wispkeds
and ANNSs to predict mean monthly wind speeds. Mareé
Deo [6] used ANNs and wind forecasts to predictpgbeer
output of wind turbines. Oztopal [7] used ANNSs negicting
the wind potential of various regions. Barbounisakt[8]
used ANNs to forecast long-term wind speeds andr the
potential for use in generating wind power. In @llthese
cases, however, the predictions were only of meamhj or
monthly wind velocities covering relatively largegions,
making them inapplicable to the very short timarfeaand
localized area of the occurrence of wind sheah@eairport
region.

One way to deal with the short-term nature of wshear
prediction is to apply chaotic neural networks [2)] which
model the non-linear behavior of neurons, activgéimeuron
with a non-linear output function, thereby provigliimr much
more complex behavior than the simple thresholdtions
used in conventional ANNSs. Inclusion of chaotic &ebr in
ANNs offers the possibility of weather forecastifil].
Neural network architectures and learning algorghm
involving chaos have been used for the storageeimany of
analog patterns [12]. While it is hard to apply@h#heory to
long-term prediction, it seems that, owing to itslity to

meso-scale weather phenomena associated with $as@fcus on the simple deterministic relationshipvidrat would

prevailing winds and local topographies. Thus, athms
and techniques used to predict wind shear caused
microbursts, as in [1], may not be applicable Atotirports
such as Hong Kong International Airport (or HKIAYhere
the main causes of wind shear and turbulence aomgst
winds blowing across the local hills [3, 4], the nd$
associated with tropical cyclones, and sea bre2gzeNind

appear to be random-looking data, it may be wetkeduto
Mort-term prediction, especially when a good pdgjsinodel
is lacking [13].

In this paper, we propose a meso-scale wind shear

prediction model that uses chaotic oscillatory-daseural
networks (CONN) to forecast the evolution of wiradsng
the glide path of the airport. The model makesaisecurate
Doppler velocities measured using LIDAR (Light Detten

Manuscript received January 6, 2010. This work wasnd Ranging) data collected by the Hong Kong Obesemy

supported in part by CERG grant B-Q05Z, and LIDARa
kindly provided by Hong Kong Observatory.
K. M. Kwong and James N.K. Liu are with the Hongrigo

at HKIA. LIDAR is an optical analogue of RADAR (RAal
Detection and Ranging). It uses a ground-baseceguéser
beam to measure the velocity of aerosols in theLADAR

Polytechnic University, Hung Hom, Kowloon, Hong Kpn 55 previously been used to detect occurrenceindfshear,

(e-mail:
csnkliu@inet.polyu.edu.hk).

P. W. Chan is with the Hong Kong Observatory, Hon

Kong (e-mail: pwchan@hko.gov.hk).

cskmkwong@comp.polyu.edu.hk

'with high accuracy [14], but there has been litigearch into

using it to forecast wind shear. The proposed mizddsted

th simulations and its predictions were comparedhwi



historical LIDAR data. The model is demonstratechave
the potential of forecasting the time, location arm of wind
shear events with considerable accuracy.

of the neural dynamics of four constitutive newamentsu,
v, w andz. The neural dynamics of each of these constituent
neurons are given by

The remainder of this paper is organized as follows ult +1)

Section Il describes chaotic oscillators, whichnfdhe basis

of our chaotic oscillatory-based neural network€ORIN)
approach. Section Il presents our methodologyafglying
CONN on wind shear forecasting. Section IV presents
simulation and its results. Section V presentsamnclusion
and an outline of future work.

II. THE CHAOTIC OSCILLATOR

= flagu(®) — a;v(t) + apz(t) + q,1(t) -8,] D

vt +1)
= flbaz{t) — byult) — byv(t) + b,I(t) — 8,] (2

wit + 1) = f[I()] (3)

20 = flv(®) - u@®le ™" £ w(r) 4)

Wilson and Cowan [15] proposed the neural oscitiato

model, which describes the behavior of neuronstasactive
triggering between excitatory and inhibitory newoifhis
theory has also formed the basis of many subseciedies
and models in cognitive information processing [46H on
the synchronization and desynchronization behafioeural
oscillators. Recent applications include patterd aremory
association, scene analysis, and pattern recogn[l®].
Chaotic oscillators have been combined with ANNs
produce Chaotic Oscillatory-based Neural
(CONN), which mimic neural behaviors in the humaaity.

Networks 1.

where u(t), v(t), w(t) and z(t) are the state variables of
respectively the excitatory, inhibitory, input armutput
neuronsf( ) is the hyperbolic tangent functioa;, a, as, au,

b;, b,, bz and by, are the weight parameters for these
constitutive neurons;#, and 6, are the thresholds for
excitatory and inhibitory neurons(t) is the external input

stimulus; and is the decay constant.
to

METHODOLOGY

One of these models is the Improved Lee OscillatorA. Data Prepumtlon

(Retrograde Signaling) model [9] which combines the The |ocal air density, local temperature variatiolzal
original Lee Oscillator [17] with the retrogradeansport effects of cloud and rain are difficult to meas{té] and
mechanism in axons, known as axonal transport @IDAR can only measure the Doppler velocities af thind.
axoplasmic flow [18]. Figure 1 is a graphic demiotiof the e make use of the Doppler velocity data derivedfglide

Lee-oscillator (Retrograde Signaling) model.
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Fig 1. Lee Oscillator (Retrograde Signaling) Mol

As a Lee Oscillator (Retrograde Signaling) modédiileixs
chaotic progressive growth in its neural dynamicsan be
used as an effective chaotic bifurcation transféria neural
networks.

The Lee Oscillator (Retrograde Signaling) modeisists

path scans of the LIDAR. The Doppler velocitiesadate first
processed with the quality control algorithm [2Dlitliers are
detected by comparing each piece of radial velowiith

neighboring data points. If the difference betwé¢eam is
larger than a pre-defined threshold, it will be sthed using
a median-filtered value. The threshold is deterghiinem the
frequency distribution of the difference in theoaties of the
adjacent range/azimuthal gates of the LIDAR ovdoray

period of time. Data quality control is kept to @imum in

order to avoid smoothing out the genuine wind fiations of
the atmosphere [20]. If data is missing for a patér
location, any available valid velocity data fromigidoring

positions or timeframes is used to derive a rephesd
velocity value through a linear interpolation oéthelocities
at the neighboring points.

The training and testing data set were normalizedsing
minimum (-1) and maximum (+1) normalization before
training and testing. Each set of training data feathe glide
path at a specific time. It included the Doppléeioeéies on a
slant range, angle of elevation, and azimuth. These used
to train the model to predict Doppler velocitiesrad the glide
path in the upcoming three minutes. The time irgkerv
between two training sets was from three to fourutes.



. . There can be one to two hidden layer(s) with sévedalen
B. Chaotic OSClllutory Based Neural neurons within. The number of hidden layers andidid

Network neurons were chosen experimentally since there Emple

The Chaotic Oscillatory Based Neural Network (CONgy) C¢l€ar-cut method for determining these paramet@s [
made up of a Multi-Layered Perception (MLP) Neuraf-haracters A _ and B in _the neurons |!1d|cate differen
Network and a Lee Oscillator (Retrograde Signalidigidel Parameter settings used with the Lee Oscillatotr(figeade
with various parameter settings. The MLP neuraivoets ~Signaling) Model. These parameters were also chosen
constructed by one or two hidden layers with sdverarons, €Xperimentally. Table 1 presents the values optirameter
and the activation function of the neurons in thiddan settings that are used in the neurons, which aeddd A and
layer(s) and output layer were replaced with thee LeB inthe hidden layer(s) and output layer in Fighre
Oscillator (Retrograde Signaling) Model rather théth the

sigmoid or hyper tangent function as in conventioreural Lee Oscillator (Retrograde Signaling)
networks. Parameterg with Parameter sets
A B
. . . 2 1.0 -0.7
C. Training and testing of the CONN % 10 06
The CONN is trained with a month of the preprocdsse & 1.0 -0.5
Doppler velocity data, which is formatted into tinmervals =h -1.0 0.4
using a back propagation learning algorithm. A motam by 1.0 -0.7
term is used to speed up convergence and avoitifoeana. b, -1.0 0.6
It learns from the root mean square error betwden t bs 1.0 -0.5
predicted result and the measured value from tH2AR b4 -1.0 0.4
through back propagation. In the testing procdss,neural k 50.0 50.0
network uses the experience gained in the traipingess to Bu 0.0 0.0
generate the forecast for the next time interval(s) By 0.0 0.0

bias N

Table 1. Values of the parameter used in the CONN

Vnut 1
Vout 2
~N
Vnut n
-1 0.8 0.6 0.4 0.2 o 0.2 0.4 0.6 0.8 1
Input layer Hidden layer Output layer E)(terna' Stimulus (I)
Fig 2. The structure of the CONN Fig 3. Bifurcation Diagram of Lee Oscillator (Regrade

Signaling) Model for Parameter set A
Figure 2 shows the structure of the CONN used & th

simulation. The current wind pattern along the celé glide
path (M,) which is measured by the LIDAR system will be
fed into the CONN through the input nodes in thuinayer.
The forecast of the winds along the selected giat@ (V)

in the next time frame can be obtained at the dutpde in
the output layer. Neurons in hidden layer(s) antpatulayer
produce the output of the chaotic oscillator basedthe
corresponding external stimulus received from threnected
neurons in the previous layer.
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Fig 4. Bifurcation Diagram of Lee Oscillator (Rejrade
Signaling) Model for Parameter set B

Figures 3 and 4 show the bifurcation diagrams efltbe
Oscillator (Retrograde Signaling) Model with paraenesets
A and B. The x-axis represents the external stisi(ilufrom
the connected neurons in the previous layer toctteotic
oscillator. The y-axis represents the output of theotic
oscillator corresponding to the external stimulukhe
response of the Lee Oscillator (Retrograde Siggalviodel
to an external input stimulus with parameter setd B can
be categorized into two regions, the sigmoid-shiag®n and
hysteresis region. The former denotes the non-thaetral
activities in the oscillator. The latter denote® tbhaotic
behavior that results when a weak external inpoiusts is
received.

In [10], the parameters which used in individualnmoss
are predefined before the start of training procasd the
training process only focuses on tuning the weigimn®ng
different layers of neurons. As the shape of tlierbation is
predefined, the responses of the Lee Oscillatotr@geade
Signaling) Model were limited to the outer mostlsbéthe
chaotic region.

Neural oscillators depend on parameters that haveet
tuned to achieve the desired performance. Howesiace
neural oscillators have highly nonlinear
parameters of neural oscillators are difficultune [21], [22].
Although there has been work on chaos control anithg) the
parameters of neural oscillator, most of it cones on
oscillation control or the frequency, amplitude githse of
the neural oscillator [21], [22], [23], and [24]itlle work has
considered the shape of the bifurcation diagrand @sethe
transfer function in CONN.

Experimental variation in the number of iteratimfsthe

same parameters set during the training processvall

CONN to produce possible changes in the chaotiomnegf
the Lee Oscillator (Retrograde Signaling) Modehufes 5
and 6 show the appearance of the Lee Oscillatdr¢ede
Signaling) Model for parameter set A at iteratidresnd 10.
The training process not only tunes the bias oforeiand
the weights between input layer, hidden layer aotput
layer, it also adjusts the number of iterationstiué Lee

dynamics,

Oscillator (Retrograde Signaling) Model in the autpayer
neurons. As the time required computing the Leeil@sar

(Retrograde Signaling) Model is directly proportébmo the
number of iterations that are assigned, it is alsssible to
improve the performance of the CONN, reducing fheet
required for less necessary iterations by adjustieqiumber
of iterations used in each individual neuron durithg

training process.

The mechanism is that a randomly generated iteratio
number (N) will be assigned to each neuron in botlden
and output layers during initialization of the nalunetwork.
Neurons in the output layer will produce five ditfat outputs
by using the assigned N value. For example, if #dlQ is
assigned to the first neuron in the hidden layeringu
initialization, this neuron will produce five outisuby using
N2 (in this example N=8, N=9, N=10, N=11 and N=ifl
be used) with the same parameter set in the cuepmth of
training. After comparing the outputs with the adtu
measured data from LIDAR, the output with the sosill
error value will be selected as the output of tietron. On
the other hand, the N that produces the output with
smallest error will be used to update the old hat neuron
in that training epoch and will be the initial Nlwa of that
neuron in the next epoch. Once the changes of thelié in
an individual neuron become steady, the mechantsmh t
updated the N value in that neuron will stop. Weuase that
the neural oscillator used in that neuron is alyeactll
trained.

By varying the N value, different possible changeshe
chaotic region of the chaotic oscillator will bestied and
selected heuristically in the training process. Tke of the
chaotic oscillator will no longer be limited to tlo@itermost
shell of the chaotic region produced by a fixed hamof
iterations assigned at the initialization of CONN.

i
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Fig 5. Lee Oscillator (Retrograde Signaling) Mofiel
Parameter set A with iterations number 4
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Fig 6. Lee Oscillator (Retrograde Signaling) Mofiel
Parameter set A with iterations number 10

D. Wind shear detection in the

forecast result

An algorithm called the GLide-path scan Wind shearts
Generation Algorithm (GLYGA) has been developedisy
Hong Kong Observatory to detect wind shear autarabyi
from headwind profiles generated from LIDAR dat8][By
combining GLYGA and the forecasted results thatpoed
by CONN, it may be possible to forecast wind steamnts.
We do this by first combining the forecast radialocities
along a glide path to construct a headwind profile
Differences in the velocities of adjacent data fwiim the
headwind profile are calculated to construct a cigjo
increment profile. Next, the wind shear rampsdatected by
comparing each data point of the profile with tiegghboring
points on two sides. The wind shear ramps deteftted a
headwind profile are prioritized using a normalizethd
shear valueAV/H?, suggested by Jones and Haynes [25
whereAV is the total change in the headwind and H is th
ramp length. If any one of the wind shear rampseds 14
knots, an alert message is generated.

IV.  SIMULATION

We tested the wind shear alert generation funatising
sea breeze data from 6 January 2009. This datehasen
because it was a day of significant wind shear igithe wind
shear ramps. A training set was constructed froendhta
recorded between 1 December 2008, 02:42:46 (UT@)lan
January 2009, 06:03:57 (UTC) and a testing set wi
constructed from the data recorded between 6 JaraQa9,
04:03:09 (UTC) and 04:54:58 (UTC).

Figure 7 shows the overall changes of the wind glkbre
glide path O7RA (i.e. landing at the south runwéH&IA
from the west) between 6 January 2009 04:05 (UT@) a
04:56 (UTC). Figure 8 shows the forecast of thedwpnofile
along the glide path 07RA made using the currenNRO
model. The x-axis shows the distance from the enth®
runway in nautical miles and the y-axis shows thadw
velocity in meters per second. The various gragdiimdicate

the wind field along the glide path at different ments.
Figure 9 provides a scatter diagram comparing tisewed
and the forecast headwinds between 6 January 200% 0
(UTC) and 04:56 (UTC). The forecasts can be seebeto
fairly close to the actual observations.

Figure 10 shows headwind profiles obtained by apgly
the GLYGA algorithm with the actual observed LIDARta
and simulation results for the sea breeze for &g from 6
January 2009 at the arriving runway corridors 07Rith
different time slots. The small figures on the lafe the
forecasts made by CONN. The small figures on thet rare
the actual observations from LIDAR. The x-axis et
distance away from the end of the runway in naltitées.
The y-axis on the left is for the head wind meagumneknots.
The y-axis on right hand side is the altitude & ¢fide path
measured in feet. The detected wind shear rampgs) a
highlighted.
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Fig 9. Forecasted versus observed headwinds

In this simulation, the forecast predicted most tioé
actually observed wind shear. In the period betwe05
(UTC) and 04:56 (UTC) wind shear was successfoligéast
for seven out of eight occurrences in 14 time sléisr
example, one 14-knot wind shear ramp was obsereteien
0.3 and 1.4 NM from the end of the runway at 0D&7:

0.9
0.7
0.5
0.3
0.1
-0.1
-0.3
-0.5

Correlation coefficient

0 100 200 300 400

Minutes

Fig 11. Correlation coefficient versus time

V. CONCLUSION

Using the LIDAR’s Doppler velocity data for a mescale
wind field, we tested CONN, a chaotic oscillatomskd
neural network, for wind shear forecasting. Experital
results show that it appears to have the poteotiehpturing
the occurrence and evolution of sudden changeseinwind
along the glide paths caused by sea breeze inithéty of
the Hong Kong International Airport. The simulati@sults
show that Doppler velocity forecast using CONN dan
transformed into headwind profile and processed wlite
wind shear alerting algorithm, GLYGA, that was deped
by the Hong Kong Observatory. The alerts basedhen

(UTC). The GLYGA algorithm captured a 15-knot windCONN forecast are shown to match actual observaticade
shear ramp between 0.5 and 1.5 NM from the enchef tUsing LIDAR in terms of time, location, and magnié.of the

runway at 04:17:06 (UTC). We note that the highlgh
region in the forecast figures (as a predicted wgimelr ramp)
corresponds to the region where wind shear indactrred
in the observed headwind profiles and they hadlainsize.

shear for a particular case of sea breeze.

In future work we will continue to focus on the wialong
the glide paths and try to optimize the computatigocess
and enhance the predictive capability of the CONdteh by

In short, the CONN model appears to make reasonabiBProving the learning algorithm and exploring niearning

predictions of the occurrence of the wind shearntsye
including the general location and magnitude ofghear.

It is fair to say that the performance of foreahasips while
time is passing. Figure 11 shows the change ofetadion
coefficient of the forecast and actually measuraizh digainst
time for a long trial. There is a sudden drop auad 180
minutes and some later fluctuation of the correfati
coefficients. This sudden drop of correlation ciméht
indicates the trained CONN begins to lose the skilnaking
valid forecast. In order to keep making valid fasg
re-training of the CONN with the last updated dail be
required.

algorithms for both CONN and the Lee Oscillator. Wid

also investigate ways to automatically tune thetiahi
parameter settings of the CONN and identify the tmos
suitable parameter settings of the Lee Oscillator f
forecasting different types of wind fluctuationsiwrthermore,

we will try to improve the quality of the forecastsd the alert

generating results. We will do this by comparingral

messages generated from actual LIDAR data, foredast

CONN, and actual wind shear experienced by aircaaft
reported by pilots.
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Fig. 10. The headwind profiles that obtained bylgipg GLYGA algorithm with the forecast(A) and tlaetual measured LIDAR(B) data
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