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ABSTRACT 

Two Doppler LIght Detection And Ranging (LIDAR) systems have been operated by the Hong Kong Observaotry 
(HKO) at the Hong Kong International Ai rport (H KIA) for the det ection and alerting of low-level windshear to be 

encountered by the aircraft.  The windshear al erting algorithm is based on the automatic identification of abrupt  
changes of headwinds along the glide paths of HKIA, which are measured by the glide-path scans of the LIDARs.  

To give earlier windshear alerts to the aircraft, forecasting of the headwind profiles would be required.  The present 
paper discusses the forecast of headwinds based on the past LIDAR data and a chaotic oscillatory neural  network 

(CONN).  The LIDAR’s headwind data in the previous 30 days or so are used to train the CONN, which is then used 
to forecast the headwind profiles in the next hour.  For two selected cases as presented in the paper, the CONN 

forecasts successfully capture the evolution of the headwind profiles.  Moreover, the use of CONN fore cast to give 
windshear alerts is demonstrated in one sea breeze case.  The forecast alerts are generally comparable with those 

based on the actual LIDAR observations.   As such, based on the limited number of sea-breeze induced windshear 
episodes considered in the paper, the application of CONN to LIDAR data has the potential of forecasting the major 

features of the evolution of the headwind profiles. 

1. INTRODUCTION 

Low-level windshear, viz. abrupt headwind changes below 1600 feet or within 3 nautical miles from the runway 
end, could be hazardous to the landing/departing aircraft of the airport.  The majority of windshear at HKIA occurs  

in clear-ai r condition, including terrain -induced airflow disturbances  (70% of the pilot windshear reports) and sea 
breeze (20% of the reports).  For the al erting of windshear, two Doppler LIDAR systems have been in operation at  

HKIA, each serving a particular runway of the airport.  

The LIDAR-based windshear alerting algorithm is based on the detection of abrupt headwind changes along the 

glide paths [1].  The headwind profile along a particular glide path is first constructed by scanning the laser beam 
along the path itsel f, a specially devised scan strategy called the glide-path scan.  The headwind data are then 

analyzed automatically in a computational algorithm to look for abrupt wind changes, also named as windshear 
ramps, for the issuance of windshear alerts if the headwind change exceeds a cert ain threshold (currently taken as 14 

knots).  This windshear algorithm is mainly detection-based using the actual LIDAR velocity observations.  

The next development of windshear alerting services would be the forecasting of low-level windshear.  In this paper, 

forecasting is attempted using neural network approach.  Initial application of this approach has been discussed in 
[2].  More case studies would be discussed in the present paper.  In particular, the CONN-forecast headwind profiles  

would be processed through the above-mentioned windshear algorithm to generate windshear alerts, which are then 
compared with the actual alerts based on the real LIDAR data.  To the knowledge of the authors, this is the first time 

that neural network is used to forecast windshear based on LIDAR-measured headwind profiles. 

2. BRIEF DESCRIPTION OF CONN AND ITS APPLICATION TO LIDAR DATA 

The structure of CONN has been described in [2] and [3] and only a summary of the major features is given here.  
The input to CONN is the actual LIDAR-measured headwind data along the glide path at various distances away 

from the runway end.  Such data are passed into the neural network, which consists of a hidden layer and an output 
layer.  The hidden l ayer has two kinds of neurons with di fferent oscillation characteristics.  The parameters of the 

oscillators have been empirically tuned from previous case studies [2 ].  A schematic diagram of the neural network 
could be found in Figure 1. 

The output data from CONN is again the headwind values at various locations along the glide path.  Two glide paths 
would be considered in this paper, namely, landing at the north runway of HKIA from the west (i.e. 07LA) and 

landing at the south runway from the west (i.e. 07RA).  The same set of parameters of the oscillators has been used 
for the neural networks as applied to these two runway corridors.  
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Figure 1  Structure of CONN 

3. EXAMPLES OF HEADWIND FORECAST 

Two cases of headwind forecast using CONN are studied here.  The 
first is a westerly sea breeze case under background easterly winds in 

the daytime of 13 November 2007.  Synoptically, a ridge of high 
pressure over southeastern coast of China brought a moderat e 

easterly airstream to Hong Kong.  With abundant sunshine, sea 
breeze set in over HKIA in the afternoon on th at day.  The LIDAR  

velocity imagery at about 05 UTC (1 p.m., with Hong Kong time =  
UTC + 8 hours) is given in Figure 2(a).  The glide path of 07LA is considered for this case.  A training dataset is  

constructed from the LIDAR velocity data recorded between 00:01:01 UTC, 13 October 2007 and 04:40:00 UTC, 
13 November 2007.  Forecast of headwind profiles is then made from 04:45:00 to 05:30:00 UTC, 13 November 

2007.  The actual 07LA headwind profiles in this forecast period is shown in Figure 2(b).  A windshear ramp 
associated with the sea breeze front (i.e. the interface between the background easterly wind and the westerly sea 

breeze) could be identi fied at the time instance labelled as “ 1” in the figure, and this ramp moves further towards the 
airport at the latter time labelled as “ 2”.  Similar evolution of the sea breeze front is given in the CONN forecast as  

given in Figure 2(c). 

The second case aims at testing the performance of CONN for larger -scal e (mesoscale) change of the wind, i.e. the 

change between easterly and southwesterly winds at HKIA on 9-10 June 2007.  Synoptically, a trough of low 
pressure persisted along the coast of southern China.  The coastal area was affected by a southerly airstream.  On the 

other hand, there was  a ridge of high pressure  over the southeastern part of China.  The LIDAR velocity imagery 
captures the change of wind direction over the ai rport, from easterly at about 22 UTC, 9 June (Figure 2(d)) to south-

southeasterly at about one hour l ater (Figure 2(e)).  As a result, the headwind profile over 07LA changes from 
mostly positive (at least up to 3 nautical mile from the runway end, at time labelled “ 1” in Figure 2(f)) to all negative 

(i.e. tailwind, at time labelled “ 2” in the same figure).  In the CONN forecast, training is made with the LIDAR data 
between 00:02:44 UTC, 1 May 2007 and 18:42:51 UTC, 9 June 2007, and forecast is then made from 22:11:44 to 

23:11:53 UTC, 9 June.  The forecast headwind profil es are shown in Figure 2(g).  It could be seen that, while it is 
not strictly a windshear case the change from positive to negative headwinds in the forecast period is captured 

successfully by CONN. 

In order to test the robustness of CONN relative to the other, more conventional neural networks, forecasts of 

headwind profiles for the above two cases have also been made using multi-layered perception (MLP) neural  
network.  The same training sets have been employed.  It turns out that the root-mean-square (r.m.s.) difference 

between the actual and the forecast headwind profiles is about 0.1 – 0.112 (for normalized headwind) using MLP, 
and the corresponding value is about 0.069 – 0.095 using CONN.  As such, with the limited number of cases under 

study, CONN is found to have better performance over the conventional MLP neural network.  More cases would be 
considered in the future to establish the performance of CONN rel ative to the other neural networks in headwind 

forecasts. 

4. FORECASTING OF WINDSHEAR ALERTS FOR A SEA BREEZE CASE 

The CONN-forecast headwind profiles  have also been used to generate windshear al erts.  The case under study is  
the windshear ramp associated with a sea breeze front in the daytime of 10 March 2006.  The LIDAR velocity 

imagery at that time is given in Figure 3(a).  The headwind profiles over 07RA are considered in the present case.  
The training dataset is constructed using the LIDAR velocity data between 00:05:42 UTC, 1 February 2006 and 

04:28:46 UTC, 10 March 2006.  The forecast is then made from 04:30:31 to 05:40:33 UTC, 10 March.  The actual 
headwind profiles in the forecast period are given in Figure 3(b), showing the movement of the windshear ramp 

towards the airport and the appearance of t ailwind over the whole glide path later in the period (due to the 
prevalence of westerly sea breeze over 07RA).  This evolution of headwind profile is captured successfully by 

CONN (Figure 3(c)).  A windshear ramp captured by the windshear al erting algorithm using the actual LIDAR data 
is shown in Figure 3(d).  Similar windshear alerts could also be given by applying the algorithm to the CONN-

forecast headwind profiles, with an example in Figure 3(e).  More sea breeze cases would be considered in future 
studies in order to establish the performance of forecast windshear al erts based on CONN and the windshear alerting 

algorithm. 



 

5. CONCLUSIONS 

A sophisticated neural network, namely, CONN, is applied to LIDAR data to forecast headwind profiles  to be 

encountered by landing aircraft at HKIA in some select ed cases.  In terms of the r.m.s. difference with the actual  
headwind data, CONN appears to have better performance in comparison with the more conventional neural  

network such as MLP.  Moreover, for a sea breeze case, the CONN-forecast headwind profiles are input into the 
LIDAR-based windshear alerting algorithm to generat e forecast windshear alerts, which are comparable with the 

alerts based on the actual LIDAR data in the forecast period.   Further studies would be carried out on the 
performance of such forecast windshear alerts, e.g. by considering the probability of detection and the alert duration 

in comparison with the pilot windshear reports.  

Figure 2  (a) is 0-degree conical scan imagery of the LIDAR for the sea breeze case on 13 November 2007.  The 

headwind profiles over 07LA between 04:50 and 05:30 UTC are shown in (b) and the corresponding CONN 
forecast shown in (c).  (d) and (e) are the 0-degree conical scan imageries of the LIDAR for the case on 9 -10 June 

2007, with the winds over HKIA changing from east erly to south-southwesterly.  The headwind profiles over 07LA 
are given in (f) and the corresponding CONN forecast given in (g).  

(a) 

(b) 

(c) 

(d) (e) 

(f) (g) 
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Figure 3  (a) is 0-degree conical scan imagery of the LIDAR for the sea breeze case on 10 March 2006.  The 
headwind profiles over 07RA between 04:30 and 05:40 UTC are shown in (b) and the corresponding CONN 

forecast shown in (c).  (d) is the headwind profile (shown in blue) over 07RA at 04:46:14 UTC, 10 March, with the 
windshear ramp highlighted in red.  (e) is the corresponding headwind profile forecast by CONN with the 

windshear ramp detected by LIDAR windshear algorithm.  

(a) 

(e) (d) 

(c) (b) 


